
Technical reference manual

 RAPID overview

Controller software IRC5

RobotWare 5.0

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.

Technical reference manual

RAPID overview
RobotWare 5.0

3HAC16580-1

Revision: G

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.

The information in this manual is subject to change without notice and should not be construed
as a commitment by ABB. ABB assumes no responsibility for any errors that may appear in this
manual.
Except as may be expressly stated anywhere in this manual, nothing herein shall be construed
as any kind of guarantee or warranty by ABB for losses, damages to persons or property, fitness
for a specific purpose or the like.
In no event shall ABB be liable for incidental or consequential damages arising from use of this
manual and products described herein.
This manual and parts thereof must not be reproduced or copied without ABB's written
permission, and contents thereof must not be imparted to a third party nor be used for any
unauthorized purpose. Contravention will be prosecuted.
Additional copies of this manual may be obtained from ABB at its then current charge.

© Copyright 2004-2008 ABB All rights reserved.

 ABB AB
Robotics Products

 SE-721 68 Västerås
 Sweden

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.

Table of content
1 Introduction ... 11
1.1 Other manuals... 11
1.2 How to read this manual... 11

2 Basic RAPID programming ... 15
2.1 Program structure ... 15

 2.1.1 Basic elements... 17
 2.1.2 Modules... 23
 2.1.3 System module User ... 27
 2.1.4 Routines .. 29

2.2 Program data... 37
 2.2.1 Data types.. 37
 2.2.2 Data declarations... 39

2.3 Expressions... 45
 2.3.1 Arithmetic expressions.. 45
 2.3.2 Logical expressions... 46
 2.3.3 String expressions ... 47
 2.3.4 Using data in expressions.. 47
 2.3.5 Using aggregates in expressions ... 48
 2.3.6 Using function calls in expressions... 48
 2.3.7 Priority between operators .. 49
 2.3.8 Example .. 50
 2.3.9 Syntax.. 50

2.4 Instructions ... 53
 2.4.1 Syntax.. 53

2.5 Controlling the program flow... 55
 2.5.1 Programming principles .. 55
 2.5.2 Calling another routine.. 55
 2.5.3 Program control within the routine ... 56
 2.5.4 Stopping program execution ... 56
 2.5.5 Stop current cycle.. 56

2.6 Various instructions .. 57
 2.6.1 Assigning a value to data .. 57
 2.6.2 Wait ... 57
 2.6.3 Comments ... 57
 2.6.4 Loading program modules .. 58
 2.6.5 Various functions... 58
 2.6.6 Basic data .. 59
 2.6.7 Conversion function.. 59
33HAC16580-1 Revision: G

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.

Table of content

2.7 Motion settings ... 61
 2.7.1 Programming principles.. 61
 2.7.2 Maximum TCP speed ... 62
 2.7.3 Defining velocity .. 62
 2.7.4 Defining acceleration .. 62
 2.7.5 Defining configuration management .. 62
 2.7.6 Defining the payload... 63
 2.7.7 Defining the behaviour near singular points... 63
 2.7.8 Displacing a program.. 64
 2.7.9 Soft servo .. 64
 2.7.10 Adjust the robot tuning values .. 65
 2.7.11 World zones... 65
 2.7.12 Various for motion settings ... 66

2.8 Motion .. 67
 2.8.1 Programming principles.. 67
 2.8.2 Positioning instructions... 68
 2.8.3 Searching... 68
 2.8.4 Activating outputs or interrupts at specific positions ... 68
 2.8.5 Control of analog output signal proportional to actual TCP................................. 69
 2.8.6 Motion control if an error/interrupt takes place.. 69
 2.8.7 Get robot info in a MultiMove system.. 70
 2.8.8 Controlling external axes .. 71
 2.8.9 Independent axes... 71
 2.8.10 Path correction .. 72
 2.8.11 Path Recorder .. 72
 2.8.12 Conveyor tracking... 73
 2.8.13 Sensor synchronization ... 73
 2.8.14 Load identification and collision detection... 73
 2.8.15 Position functions.. 74
 2.8.16 Check interrupted path after power failure ... 74
 2.8.17 Status functions... 74
 2.8.18 Motion data ... 74
 2.8.19 Basic data for movements... 75

2.9 Input and output signals ... 77
 2.9.1 Programming principles.. 77
 2.9.2 Changing the value of a signal.. 77
 2.9.3 Reading the value of an input signal... 77
 2.9.4 Reading the value of an output signal... 78
3HAC16580-1 Revision: G4

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.

Table of content
 2.9.5 Testing input or output signals .. 78
 2.9.6 Disabling and enabling I/O modules... 78
 2.9.7 Defining input and output signals ... 79
 2.9.8 Get status of I/O bus and unit.. 79
 2.9.9 Start of I/O bus .. 79

2.10 Communication .. 81
 2.10.1 Programming principles .. 81
 2.10.2 Communicating using the FlexPendant, function group TP 82
 2.10.3 Communicating using the FlexPendant, function group UI 82
 2.10.4 Reading from or writing to a character-based serial channel/file 83
 2.10.5 Communicating using binary serial channels/files/field buses 83
 2.10.6 Communication using rawbytes.. 84
 2.10.7 Data for serial channels/files/field buses .. 84
 2.10.8 Communicating using sockets .. 85
 2.10.9 Communication using RAPID Message Queues .. 85

2.11 Interrupts... 87
 2.11.1 Programming principles .. 87
 2.11.2 Connecting interrupts to trap routines... 89
 2.11.3 Ordering interrupts .. 89
 2.11.4 Cancelling interrupts ... 89
 2.11.5 Enabling/disabling interrupts .. 89
 2.11.6 Interrupt data ... 90
 2.11.7 Data type of interrupts... 90
 2.11.8 Safe Interrupt... 91
 2.11.9 Interrupt manipulation... 91
 2.11.10 Trap routines.. 91

2.12 Error recovery... 93
 2.12.1 Programming principles .. 93
 2.12.2 Creating an error situation from within the program .. 94
 2.12.3 Booking an error number .. 94
 2.12.4 Restarting/returning from the error handler .. 95
 2.12.5 User defined errors and warnings ... 95
 2.12.6 IGenerate process error ... 95
 2.12.7 Data for error handling.. 96
 2.12.8 Configuration for error handling... 96
 2.12.9 Error handlers.. 97
 2.12.10 System error handler ... 97
 2.12.11 Errors raised by the program... 98
53HAC16580-1 Revision: G

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.

Table of content

 2.12.12 The event log... 98
 2.12.13 UNDO... 99

2.13 System & time .. 103
 2.13.1 Programming principles.. 103
 2.13.2 Using a clock to time an event.. 103
 2.13.3 Reading current time and date .. 103
 2.13.4 Retrieve time information from file.. 104
 2.13.5 Get the size of free program memory ... 104

2.14 Mathematics ... 105
 2.14.1 Programming principles.. 105
 2.14.2 Simple calculations on numeric data .. 105
 2.14.3 More advanced calculations.. 105
 2.14.4 Arithmetic functions ... 106
 2.14.5 String digit functions... 106
 2.14.6 Bit functions.. 107

2.15 External computer communication .. 109
 2.15.1 Programming principles.. 109
 2.15.2 Sending a program-controlled message from the robot to a computer............. 109

2.16 File operation functions...111
2.17 RAPID support instructions ... 113

 2.17.1 Get system data ... 113
 2.17.2 Get information about the system... 113
 2.17.3 Get information about memory... 114
 2.17.4 Read configuration data .. 114
 2.17.5 Write configuration data ... 114
 2.17.6 Restart the controller... 114
 2.17.7 Text tables instructions ... 114
 2.17.8 Get object name .. 115
 2.17.9 Get information about the tasks .. 115
 2.17.10 Get current event type, execution handler or execution level......................... 116
 2.17.11 Search for symbols.. 116

2.18 Calib & service instructions ... 117
 2.18.1 Calibration of the tool ... 117
 2.18.2 Various calibration methods.. 117
 2.18.3 Directing a value to the robot’s test signal.. 117
 2.18.4 Recording of an execution .. 118

2.19 String functions .. 119
 2.19.1 Basic operations .. 119
3HAC16580-1 Revision: G6

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.

Table of content
 2.19.2 Comparison and searching .. 119
 2.19.3 Conversion .. 120

2.20 Multitasking.. 121
 2.20.1 Basics .. 122
 2.20.2 General instructions and functions.. 122
 2.20.3 MultiMove System with coordinated robots... 123
 2.20.4 Synchronising the tasks... 125
 2.20.5 Synchronising using polling.. 125
 2.20.6 Synchronising using an interrupt .. 126
 2.20.7 Intertask communication... 127
 2.20.8 Type of task ... 128
 2.20.9 Priorities .. 128
 2.20.10 Trust Level .. 129
 2.20.11 Something to think about .. 130
 2.20.12 Programming scheme.. 130

2.21 Backward execution ... 133
 2.21.1 Backward handlers .. 133
 2.21.2 Limitation of move instructions in the backward handler 134
 2.21.3 Behavior of the backward execution... 135

2.22 Syntax summary ... 139
 2.22.1 Instructions.. 139
 2.22.2 Functions... 152

3 Motion and IO programming .. 159
3.1 Coordinate systems... 159

 3.1.1 The robot’s tool centre point (TCP) .. 159
 3.1.2 Coordinate systems used to determine the position of the TCP 159
 3.1.3 Coordinate systems used to determine the direction of the tool 164
 3.1.4 Related information... 168

3.2 Positioning during program execution ... 169
 3.2.1 General .. 169
 3.2.2 Interpolation of the position and orientation of the tool 169
 3.2.3 Interpolation of corner paths ... 173
 3.2.4 Independent axes... 179
 3.2.5 Soft Servo.. 182
 3.2.6 Stop and restart.. 182
 3.2.7 Related information... 183

3.3 Synchronisation with logical instructions... 185
 3.3.1 Sequential program execution at stop points .. 185
73HAC16580-1 Revision: G

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.

Table of content

 3.3.2 Sequential program execution at fly-by points ... 185
 3.3.3 Concurrent program execution ... 186
 3.3.4 Path synchronisation ... 189
 3.3.5 Related information .. 190

3.4 Robot configuration.. 191
 3.4.1 Different types of robot configurations... 191
 3.4.2 Specifying robot configuration ... 193
 3.4.3 Configuration check.. 193
 3.4.4 Related information .. 195

3.5 Robot kinematic models ... 197
 3.5.1 Robot kinematics .. 197
 3.5.2 General kinematics.. 199
 3.5.3 Related information .. 201

3.6 Motion supervision/collision detection .. 203
 3.6.1 Introduction... 203
 3.6.2 Tuning of collision detection levels .. 203
 3.6.3 Motion supervision dialogue box.. 205
 3.6.4 Digital outputs... 205
 3.6.5 Limitations .. 205
 3.6.6 Related information .. 206

3.7 Singularities.. 207
 3.7.1 Singularity points of IRB140 .. 208
 3.7.2 Program execution through singularities .. 208
 3.7.3 Jogging through singularities.. 209
 3.7.4 Related information .. 209

3.8 Optimized acceleration limitation .. 211
3.9 World Zones ... 213

 3.9.1 Using global zones.. 213
 3.9.2 Using World Zones ... 213
 3.9.3 Definition of World Zones in the world coordinate system................................ 213
 3.9.4 Supervision of the robot TCP ... 214
 3.9.5 Stationary TCPs .. 214
 3.9.6 Actions .. 215
 3.9.7 Minimum size of World Zones. .. 216
 3.9.8 Maximum number of World Zones... 216
 3.9.9 Power failure, restart, and run on.. 217
 3.9.10 Related information .. 217

3.10 I/O principles .. 219
3HAC16580-1 Revision: G8

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.

Table of content
 3.10.1 Signal characteristics... 219
 3.10.2 Signals connected to interrupt... 220
 3.10.3 System signals... 221
 3.10.4 Cross connections ... 221
 3.10.5 Limitations .. 222
 3.10.6 Related information... 222

4 Glossary.. 223
93HAC16580-1 Revision: G

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.

Table of content

3HAC16580-1 Revision: G10

1 Introduction
1.1 Other manuals

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
1 Introduction
This is a reference manual containing a detailed explanation of the programming
language as well as all data types, instructions and functions. If you are programming
off-line, this manual will be particularly useful in this respect.

When you start to program the robot it is normally better to start with the Operating
manual - IRC5 with FlexPendant until you are familiar with the system.

1.1 Other manuals

The Operating manual - IRC5 with FlexPendant provides step-by-step instructions on
how to perform various tasks, such as how to move the robot manually, how to
program, or how to start a program when running production.

The Product Manual describes how to install the robot, as well as maintenance
procedures and troubleshooting.

The Product Specification contains an overview of the characteristics and performance
of the robot.

1.2 How to read this manual

To answer the questions Which instruction should I use? or What does this instruction
mean?, see RAPID Overview Chapter 2: Basic RAPID programming. This chapter
briefly describes all instructions, functions and data types grouped in accordance with
the instruction pick-lists you use when programming. It also includes a summary of the
syntax, which is particularly useful when programming off-line.
It also explains the inner details of the language.

RAPID Overview Chapter 3: Motion and I/O Programming describes the various
coordinate systems of the robot, its velocity and other motion characteristics during
different types of execution.

To make things easier to locate and understand, RAPID Overview chapter 4 contains a
Glossary and Index.
113HAC16580-1 Revision: G

1 Introduction
1.2 How to read this manual

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Typographic conventions

The commands located under any of the five menu keys at the top of the FlexPendant
display are written in the form of Menu: Command. For example, to activate the Print
command in the File menu, you choose File: Print.

The names on the function keys and in the entry fields are specified in bold italic
typeface, e.g. Modpos.

Words belonging to the actual programming language, such as instruction names, are
written in italics, e.g. MoveL.

Examples of programs are always displayed in the same way as they are output to a
diskette or printer. This differs from what is displayed on the FlexPendant in the
following ways:

- Certain control words that are masked in the FlexPendant display are printed,
e.g. words indicating the start and end of a routine.

- Data and routine declarations are printed in the formal form,
e.g. VAR num reg1;.

Syntax rules

Instructions and functions are described using both simplified syntax and formal
syntax. If you use the FlexPendant to program, you generally only need to know the
simplified syntax, since the robot automatically makes sure that the correct syntax is
used.

Simplified syntax

Example:

- Optional arguments are enclosed in square brackets []. These arguments can be
omitted.

- Arguments that are mutually exclusive, i.e. cannot exist in the instruction at the
same time, are separated by a vertical bar |.

- Arguments that can be repeated an arbitrary number of times are enclosed in
braces { }.

TPWrite String [\Num] | [\Bool] | [\Pos] | [\Orient]

Instruction Optional
argument

Compulsory
argument

Mutually
exclusive
arguments
3HAC16580-1 Revision: G12

1 Introduction
1.2 How to read this manual

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Formal syntax

Example: TPWrite
[String’:=’] <expression (IN) of string>
[’\’Num’:=’ <expression (IN) of num>] |
[’\’Bool’:=’ <expression (IN) of bool>] |
[’\’Pos’:=’ <expression (IN) of pos>] |
[’\’Orient’:=’ <expression (IN) of orient>]’;’

- The text within the square brackets [] may be omitted.
- Arguments that are mutually exclusive, i.e. cannot exist in the instruction at the

same time, are separated by a vertical bar |.
- Arguments that can be repeated an arbitrary number of times are enclosed in

braces { }.
- Symbols that are written in order to obtain the correct syntax are enclosed in

single quotation marks (apostrophes) ’ ’.
- The data type of the argument (italics) and other characteristics are enclosed in

angle brackets < >. See the description of the parameters of a routine for more
detailed information.

The basic elements of the language and certain instructions are written using a special
syntax, EBNF. This is based on the same rules, but with some additions.

Example: GOTO <identifier>’;’
<identifier> ::= <ident>

| <ID>
<ident> ::= <letter> {<letter> | <digit> | ’_’}

- The symbol ::= means is defined as.
- Text enclosed in angle brackets < > is defined in a separate line.
133HAC16580-1 Revision: G

1 Introduction
1.2 How to read this manual

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3HAC16580-1 Revision: G14

2 Basic RAPID programming
2.1 Program structure

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2 Basic RAPID programming

2.1 Program structure

The program consists of a number of instructions which describe the work of the robot.
Thus, there are specific instructions for the various commands, such as one to move the
robot, one to set an output, etc.

The instructions generally have a number of associated arguments which define what
is to take place in a specific instruction. For example, the instruction for resetting an
output contains an argument which defines which output is to be reset; e.g. Reset do5.
These arguments can be specified in one of the following ways:

- as a numeric value, e.g. 5 or 4.6
- as a reference to data, e.g. reg1
- as an expression, e.g. 5+reg1*2
- as a function call, e.g. Abs(reg1)
- as a string value, e.g. "Producing part A"

There are three types of routines – procedures, functions and trap routines.

- A procedure is used as a subprogram.
- A function returns a value of a specific type and is used as an argument of an

instruction.
- Trap routines provide a means of responding to interrupts. A trap routine can

be associated with a specific interrupt; e.g. when an input is set, it is
automatically executed if that particular interrupt occurs.

Information can also be stored in data, e.g. tool data (which contains all information on
a tool, such as its TCP and weight) and numerical data (which can be used, for example,
to count the number of parts to be processed). Data is grouped into different data types
which describe different types of information, such as tools, positions and loads. As
this data can be created and assigned arbitrary names, there is no limit (except that
imposed by memory) on the number of data. These data can exist either globally in the
program or locally within a routine.

There are three kinds of data – constants, variables and persistents.

- A constant represents a static value and can only be assigned a new value
manually.

- A variable can also be assigned a new value during program execution.
- A persistent can be described as a “persistent” variable. When a program is

saved the initialization value reflects the current value of the persistent.
153HAC16580-1 Revision: G

2 Basic RAPID programming
2.1 Program structure

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Other features in the language are:

- Routine parameters
- Arithmetic and logical expressions
- Automatic error handling
- Modular programs
- Multitasking

The language is not case sensitive, for example upper case and lower case letters are
considered the same.
3HAC16580-1 Revision: G16

2 Basic RAPID programming
2.1.1 Basic elements

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.1.1 Basic elements

2.1.1.1 Identifiers

Identifiers are used to name modules, routines, data and labels;

e.g. MODULE module_name
PROC routine_name()
VAR pos data_name;
label_name:

The first character in an identifier must be a letter. The other characters can be letters,
digits or underscores “_”.

The maximum length of any identifier is 32 characters, each of these characters being
significant. Identifiers that are the same except that they are typed in the upper case,
and vice versa, are considered the same.

Reserved words

The words listed below are reserved. They have a special meaning in the RAPID
language and thus must not be used as identifiers.

There are also a number of predefined names for data types, system data, instructions,
and functions, that must not be used as identifiers.

ALIAS AND BACKWARD CASE
CONNECT CONST DEFAULT DIV
DO ELSE ELSEIF ENDFOR
ENDFUNC ENDIF ENDMODULE ENDPROC
ENDRECORD ENDTEST ENDTRAP ENDWHILE
ERROR EXIT FALSE FOR
FROM FUNC GOTO IF
INOUT LOCAL MOD MODULE
NOSTEPIN NOT NOVIEW OR
PERS PROC RAISE READONLY
RECORD RETRY RETURN STEP
SYSMODULE TEST THEN TO
TRAP TRUE TRYNEXT UNDO
VAR VIEWONLY WHILE WITH
XOR
173HAC16580-1 Revision: G

2 Basic RAPID programming
2.1.1 Basic elements

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.1.1.2 Spaces and new-line characters

The RAPID programming language is a free format language, meaning that spaces can
be used anywhere except for in:

- identifiers
- reserved words
- numerical values
- placeholders.

New-line, tab and form-feed characters can be used wherever a space can be used,
except for within comments.

Identifiers, reserved words and numeric values must be separated from one another by
a space, a new-line, tab or form-feed character.

2.1.1.3 Numeric values

A numeric value can be expressed as

- an integer, e.g. 3, -100, 3E2
- a decimal number, e.g. 3.5, -0.345, -245E-2

The value must be in the range specified by the ANSI IEEE 754-1985 standard (single
precision) float format.

2.1.1.4 Logical values

A logical value can be expressed as TRUE or FALSE.

2.1.1.5 String values

A string value is a sequence of characters (ISO 8859-1 (Latin-1)) and control
characters (non-ISO 8859-1 (Latin-1) characters in the numeric code range 0-255).
Character codes can be included, making it possible to include non-printable characters
(binary data) in the string as well. String length max. 80 characters.
3HAC16580-1 Revision: G18

2 Basic RAPID programming
2.1.1 Basic elements

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Example: "This is a string"
"This string ends with the BEL control character \07"

If a backslash (which indicates character code) or double quote character is included,
it must be written twice.

Example: "This string contains a "" character"
"This string contains a \\ character"

2.1.1.6 Comments

Comments are used to make the program easier to understand. They do not affect the
meaning of the program in any way.

A comment starts with an exclamation mark “!” and ends with a new-line character. It
occupies an entire line and cannot occur outside a module declaration;

e.g. ! comment
IF reg1 > 5 THEN

! comment
reg2 := 0;

ENDIF

2.1.1.7 Placeholders

Placeholders can be used to temporarily represent parts of a program that are “not yet
defined”. A program that contains placeholders is syntactically correct and may be
loaded into the program memory.

Placeholder Represents:

<TDN> data type definition

<DDN> data declaration

<RDN> routine declaration

<PAR> formal optional alternative parameter

<ALT> optional formal parameter

<DIM> formal (conformant) array dimension

<SMT> instruction

<VAR> data object (variable, persistent or parameter) reference

<EIT> else if clause of if instruction

<CSE> case clause of test instruction

<EXP> expression

<ARG> procedure call argument

<ID> identifier
193HAC16580-1 Revision: G

2 Basic RAPID programming
2.1.1 Basic elements

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.1.1.8 File header

A program file starts with the following file header:

%%%
 VERSION:1 (Program version M94 or M94A)
 LANGUAGE:ENGLISH (or some other language:
%%% GERMAN or FRENCH)

2.1.1.9 Syntax

Identifiers

<identifier> ::=
<ident>
| <ID>

<ident> ::= <letter> {<letter> | <digit> | ’_’}

Numeric values

<num literal> ::=
<integer> [<exponent>]
| <integer> ’.’ [<integer>] [<exponent>]
| [<integer>] ’.’ <integer> [<exponent>]

<integer> ::= <digit> {<digit>}
<exponent> ::= (’E’ | ’e’) [’+’ | ’-’] <integer>

Logical values

<bool literal> ::= TRUE | FALSE

String values

<string literal> ::= ’"’ {<character> | <character code> } ’"’
<character code> ::= ’\’ <hex digit> <hex digit>
<hex digit> ::= <digit> | A | B | C | D | E | F | a | b | c | d | e | f

Comments

<comment> ::=
’!’ {<character> | <tab>} <newline>
3HAC16580-1 Revision: G20

2 Basic RAPID programming
2.1.1 Basic elements

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Characters

<character> ::= -- ISO 8859-1 (Latin-1)--
<newline> ::= -- newline control character --
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<letter> ::=

<upper case letter>
| <lower case letter>

<upper case letter> ::=
A | B | C | D | E | F | G | H | I | J
| K | L | M | N | O | P | Q | R | S | T
| U | V | W | X | Y | Z | À | Á | Â | Ã
| Ä | Å | Æ | Ç | È | É | Ê | Ë | Ì | Í
| Î | Ï | 1) | Ñ | Ò | Ó | Ô | Õ | Ö | Ø
| Ù | Ú | Û | Ü | 2) | 3) | ß

<lower case letter> ::=
a | b | c | d | e | f | g | h | i | j
| k | l | m | n | o | p | q | r | s | t
| u | v | w | x | y | z | ß | à | á | â
| ã| ä | å | æ | ç | è | é | ê | ë | ì
| í | î | ï | 1) | ñ | ò | ó | ô | õ | ö
| ø | ù | ú | û | ü | 2) | 3) | ÿ

1) Icelandic letter eth.
2) Letter Y with acute accent.
3) Icelandic letter thorn.
213HAC16580-1 Revision: G

2 Basic RAPID programming
2.1.1 Basic elements

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3HAC16580-1 Revision: G22

2 Basic RAPID programming
2.1.2 Modules

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.1.2 Modules

The program is divided into program and system modules (see Figure 1).

Figure 1 The program can be divided into modules.

2.1.2.1 Program modules

A program module can consist of different data and routines. Each module, or the
whole program, can be copied to diskette, RAM disk, etc., and vice versa.

One of the modules contains the entry procedure, a global procedure called main.
Executing the program means, in actual fact, executing the main procedure. The
program can include many modules, but only one of these will have a main procedure.

A module may, for example, define the interface with external equipment or contain
geometrical data that is either generated from CAD systems or created on-line by
digitizing (teach programming).

Whereas small installations are often contained in one module, larger installations may
have a main module that references routines and/or data contained in one or several
other modules.

Main module

Module2

Module3

Module4

Program data

Main routine

Routine1

Routine2

Program data

Routine4

Routine5

Routine3

Module1

System module1

System module2

Program data

Routine6

Routine7

Program memory
Program
233HAC16580-1 Revision: G

2 Basic RAPID programming
2.1.2 Modules

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.1.2.2 System modules

System modules are used to define common, system-specific data and routines, such
as tools. They are not included when a program is saved, meaning that any update made
to a system module will affect all existing programs currently in, or loaded at a later
stage into the program memory.

2.1.2.3 Module declarations

A module declaration specifies the name and attributes of that module. These attributes
can only be added off-line, not using the FlexPendant. The following are examples of
the attributes of a module:

e.g. MODULE module_name (SYSMODULE, VIEWONLY)
!data type definition
!data declarations
!routine declarations

ENDMODULE

A module may not have the same name as another module or a global routine or data.

2.1.2.4 Program file structure

As indicated above all program modules are contained in a program with a specific
program name. When saving a program on the flash-disk or mass memory, then a new
directory is created with the name of the program. In this directory all program
modules will be saved with a file extension .mod together with a description file with
the same name as the program and with the extension .pgf. The description file will
include a list of all modules contained in the progam.

Attribute If specified, the module:

SYSMODULE is a system module, otherwise a program module

NOSTEPIN cannot be entered during stepwise execution

VIEWONLY cannot be modified

READONLY cannot be modified, but the attribute can be removed

NOVIEW cannot be viewed, only executed. Global routines can be reached from other
modules and are always run as NOSTEPIN. The current values for global data
can be reached from other modules or from the data window on the Flex-
Pendant. NOVIEW can only be defined off-line from a PC.
3HAC16580-1 Revision: G24

2 Basic RAPID programming
2.1.2 Modules

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.1.2.5 Syntax

Module declaration

<module declaration> ::=
MODULE <module name> [<module attribute list>]
<type definition list>
<data declaration list>
<routine declaration list>
ENDMODULE

<module name> ::= <identifier>
<module attribute list> ::= ‘(‘ <module attribute> { ‘,’ <module attribute> } ‘)’
<module attribute> ::=

SYSMODULE
| NOVIEW
| NOSTEPIN
| VIEWONLY
| READONLY

(Note. If two or more attributes are used they must be in the above order, the
NOVIEW attribute can only be specified alone or together with the attribute
SYSMODULE.)

<type definition list> ::= { <type definition> }
<data declaration list> ::= { <data declaration> }
<routine declaration list> ::= { <routine declaration> }
253HAC16580-1 Revision: G

2 Basic RAPID programming
2.1.2 Modules

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3HAC16580-1 Revision: G26

2 Basic RAPID programming
2.1.3 System module User

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.1.3 System module User

In order to facilitate programming, predefined data is supplied with the robot. This data
does not have to be created and, consequently, can be used directly.

If this data is used, initial programming is made easier. It is, however, usually better to
give your own names to the data you use, since this makes the program easier for you
to read.

2.1.3.1 Contents

User comprises five numerical data (registers), one work object data, one clock and
two symbolic values for digital signals.

User is a system module, which means that it is always present in the memory of the
robot regardless of which program is loaded.

Name Data type Declaration

reg1 num VAR num reg1:=0

reg2 . .
reg3 . .
reg4 . .
reg5 num VAR num reg5:=0

clock1 clock VAR clock clock1
273HAC16580-1 Revision: G

2 Basic RAPID programming
2.1.3 System module User

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3HAC16580-1 Revision: G28

2 Basic RAPID programming
2.1.4 Routines

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.1.4 Routines

There are three types of routines (subprograms): procedures, functions and traps.

- Procedures do not return a value and are used in the context of instructions.
- Functions return a value of a specific type and are used in the context of

expressions.
- Trap routines provide a means of dealing with interrupts. A trap routine can be

associated with a specific interrupt and then, if that particular interrupt occurs
at a later stage, will automatically be executed. A trap routine can never be
explicitly called from the program.

2.1.4.1 Routine scope

The scope of a routine denotes the area in which the routine is visible. The optional
local directive of a routine declaration classifies a routine as local (within the module),
otherwise it is global.

Example: LOCAL PROC local_routine (...
PROC global_routine (...

The following scope rules apply to routines (see the example in Figure 2):

- The scope of a global routine may include any module in the task.
- The scope of a local routine comprises the module in which it is contained.
- Within its scope, a local routine hides any global routine or data with the same

name.
- Within its scope, a routine hides instructions and predefined routines and data

with the same name.

Figure 2 Example: The following routines can be called from Routine h:
Module1 - Routine c, d.
Module2 - All routines.

A routine may not have the same name as another routine, data or data type in the same
module. A global routine may not have the same name as a module or a global routine,
global data or global data type in another module.

Module1 Module2

Local Routine a

Local Routine b

Routine c

Routine d

Routine e

Local Routine a

Local Routine e

Routine f

Routine g

Routine h
293HAC16580-1 Revision: G

2 Basic RAPID programming
2.1.4 Routines

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.1.4.2 Parameters

The parameter list of a routine declaration specifies the arguments (actual parameters)
that must/can be supplied when the routine is called.

There are four different types of parameters (in the access mode):

- Normally, a parameter is used only as an input and is treated as a routine
variable. Changing this variable will not change the corresponding argument.

- An INOUT parameter specifies that a corresponding argument must be a
variable (entire, element or component) or an entire persistent which can be
changed by the routine.

- A VAR parameter specifies that a corresponding argument must be a variable
(entire, element or component) which can be changed by the routine.

- A PERS parameter specifies that a corresponding argument must be an entire
persistent which can be changed by the routine.

If an INOUT, VAR or PERS parameter is updated, this means, in actual fact, that the
argument itself is updated, i.e. it makes it possible to use arguments to return values to the
calling routine.

Example: PROC routine1 (num in_par, INOUT num inout_par,
VAR num var_par, PERS num pers_par)

A parameter can be optional and may be omitted from the argument list of a routine
call. An optional parameter is denoted by a backslash “\” before the parameter.

Example: PROC routine2 (num required_par \num optional_par)

The value of an optional parameter that is omitted in a routine call may not be
referenced. This means that routine calls must be checked for optional parameters
before an optional parameter is used.

Two or more optional parameters may be mutually exclusive (i.e. declared to exclude
each other), which means that only one of them may be present in a routine call. This
is indicated by a stroke “|” between the parameters in question.

Example: PROC routine3 (\num exclude1 | num exclude2)

The special type, switch, may (only) be assigned to optional parameters and provides
a means to use switch arguments, i.e. arguments that are only specified by names (not
values). A value cannot be transferred to a switch parameter. The only way to use a
switch parameter is to check for its presence using the predefined function, Present.

Example: PROC routine4 (\switch on | switch off)
...

 IF Present (off) THEN
 ...
ENDPROC
3HAC16580-1 Revision: G30

2 Basic RAPID programming
2.1.4 Routines

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Arrays may be passed as arguments. The degree of an array argument must comply
with the degree of the corresponding formal parameter. The dimension of an array
parameter is “conformant” (marked with “*”). The actual dimension thus depends on
the dimension of the corresponding argument in a routine call. A routine can determine
the actual dimension of a parameter using the predefined function, Dim.

Example: PROC routine5 (VAR num pallet{*,*})

2.1.4.3 Routine termination

The execution of a procedure is either explicitly terminated by a RETURN instruction
or implicitly terminated when the end (ENDPROC, BACKWARD, ERROR or
UNDO) of the procedure is reached.

The evaluation of a function must be terminated by a RETURN instruction.

The execution of a trap routine is explicitly terminated using the RETURN instruction
or implicitly terminated when the end (ENDTRAP, ERROR or UNDO) of that trap
routine is reached. Execution continues from the point where the interrupt occurred.

2.1.4.4 Routine declarations

A routine can contain routine declarations (including parameters), data, a body, a
backward handler (only procedures) and an error handler (see Figure 3). Routine
declarations cannot be nested, i.e. it is not possible to declare a routine within a routine.

Figure 3 A routine can contain declarations, data, a body, a backward handler, an error
handler and an undo handler.

Routine declaration

Data declarations

Body (Instructions)

Backward handler

Module

Data declarations

Routine a

Routine b

Routine c

Routine d

Routine e

Error handler

Undo handler
313HAC16580-1 Revision: G

2 Basic RAPID programming
2.1.4 Routines

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Procedure declaration

Example: Multiply all elements in a num array by a factor;

PROC arrmul(VAR num array{*}, num factor)
FOR index FROM 1 TO dim(array, 1) DO

array{index} := array{index} * factor;
ENDFOR

ENDPROC

Function declaration

A function can return any data type value, but not an array value.

Example: Return the length of a vector;

FUNC num veclen (pos vector)
 RETURN Sqrt(Pow(vector.x,2)+Pow(vector.y,2)+Pow(vector.z,2));
ENDFUNC

Trap declaration

Example: Respond to feeder empty interrupt;

TRAP feeder_empty
 wait_feeder;
 RETURN;
ENDTRAP

2.1.4.5 Procedure call

When a procedure is called, the arguments that correspond to the parameters of the
procedure shall be used:

- Mandatory parameters must be specified. They must also be specified in the
correct order.

- Optional arguments can be omitted.
- Conditional arguments can be used to transfer parameters from one routine call

to another.

See 2.3.6 Using function calls in expressions on page 48 for more details.

The procedure name may either be statically specified by using an identifier (early
binding) or evaluated during runtime from a string type expression (late binding). Even
though early binding should be considered to be the “normal” procedure call form, late
binding sometimes provides very efficient and compact code. Late binding is defined
by putting percent signs before and after the string that denotes the name of the
procedure.
3HAC16580-1 Revision: G32

2 Basic RAPID programming
2.1.4 Routines

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Example: ! early binding
TEST products_id
CASE 1:

proc1 x, y, z;
CASE 2:

proc2 x, y, z;
CASE 3:

...
! same example using late binding
% “proc” + NumToStr(product_id, 0) % x, y, z;

...
! same example again using another variant of late binding
VAR string procname {3} :=[“proc1”, “proc2”, “proc3”];

...
% procname{product_id} % x, y, z;

...

Note that the late binding is available for procedure calls only, and not for function
calls. If a reference is made to an unknown procedure using late binding, the system
variable ERRNO is set to ERR_REFUNKPRC. If a reference is made to a procedure
call error (syntax, not procedure) using late binding, the system variable ERRNO is set
to ERR_CALLPROC.

2.1.4.6 Syntax

Routine declaration

<routine declaration> ::=
[LOCAL] (<procedure declaration>
 | <function declaration>
 | <trap declaration>)
| <comment>
| <RDN>

Parameters

<parameter list> ::=
<first parameter declaration> { <next parameter declaration> }

<first parameter declaration> ::=
<parameter declaration>
| <optional parameter declaration>
| <PAR>

<next parameter declaration> ::=
’,’ <parameter declaration>
 | <optional parameter declaration>
 | ’,’<optional parameter declaration>
 | ’,’ <PAR>
333HAC16580-1 Revision: G

2 Basic RAPID programming
2.1.4 Routines

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
<optional parameter declaration> ::=
’\’ (<parameter declaration> | <ALT>)

{ ’|’ (<parameter declaration> | <ALT>) }
<parameter declaration> ::=

[VAR | PERS | INOUT] <data type>
<identifier> [’{’ (’*’ { ’,’ ’*’ }) | <DIM>] ’}’

| ’switch’ <identifier>

Procedure declaration

<procedure declaration> ::=
PROC <procedure name>
’(’ [<parameter list>] ’)’
<data declaration list>
<instruction list>
[BACKWARD <instruction list>]
[ERROR <instruction list>]
[UNDO <instruction list>]
ENDPROC

<procedure name> ::= <identifier>
<data declaration list> ::= {<data declaration>}

Function declaration

<function declaration> ::=
FUNC <value data type>
<function name>
’(’ [<parameter list>] ’)’
<data declaration list>
<instruction list>
[ERROR <instruction list>]
[UNDO <instruction list>]
ENDFUNC

<function name> ::= <identifier>

Trap routine declaration

<trap declaration> ::=
TRAP <trap name>
<data declaration list>
<instruction list>
[ERROR <instruction list>]
[UNDO <instruction list>]
ENDTRAP

<trap name> ::= <identifier>
3HAC16580-1 Revision: G34

2 Basic RAPID programming
2.1.4 Routines

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Procedure call

<procedure call> ::= <procedure> [<procedure argument list>] ’;’
<procedure> ::=

<identifier>
| ’%’ <expression> ’%’

<procedure argument list> ::= <first procedure argument> { <procedure argument> }
<first procedure argument> ::=

<required procedure argument>
| <optional procedure argument>
| <conditional procedure argument>
| <ARG>

<procedure argument> ::=
’,’ <required procedure argument>
| <optional procedure argument>
| ’,’ <optional procedure argument>
| <conditional procedure argument>
| ’,’ <conditional procedure argument>
| ’,’ <ARG>

<required procedure argument> ::= [<identifier> ’:=’] <expression>
<optional procedure argument> ::= ’\’ <identifier> [’:=’ <expression>]
<conditional procedure argument> ::= ’\’ <identifier> ’?’ (<parameter> | <VAR>)
353HAC16580-1 Revision: G

2 Basic RAPID programming
2.1.4 Routines

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3HAC16580-1 Revision: G36

2 Basic RAPID programming
2.2 Program data

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.2 Program data

2.2.1 Data types

There are three different kinds of data types:

- An atomic type is atomic in the sense that it is not defined based on any other
type and cannot be divided into parts or components, e.g. num.

- A record data type is a composite type with named, ordered components, e.g.
pos. A component may be of an atomic or record type.

A record value can be expressed using an aggregate representation;

e.g. [300, 500, depth]pos record aggregate value.

A specific component of a record data can be accessed by using the name of
that component;

e.g. pos1.x := 300; assignment of the x-component of pos1.
- An alias data type is by definition equal to another type. Alias types make it

possible to classify data objects.

2.2.1.1 Non-value data types

Each available data type is either a value data type or a non-value data type. Simply
speaking, a value data type represents some form of “value”. Non-value data cannot be
used in value-oriented operations:

- Initialisation
- Assignment (:=)
- Equal to (=) and not equal to (<>) checks
- TEST instructions
- IN (access mode) parameters in routine calls
- Function (return) data types

The input data types (signalai, signaldi, signalgi) are of the data type semi value. These
data can be used in value-oriented operations, except initialisation and assignment.

In the description of a data type it is only specified when it is a semi value or a non-
value data type.
373HAC16580-1 Revision: G

2 Basic RAPID programming
2.2.1 Data types

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.2.1.2 Equal (alias) data types

An alias data type is defined as being equal to another type. Data with the same data
types can be substituted for one another.

Example: VAR dionum high:=1;
VAR num level; This is OK since dionum is an alias
level:= high; data type for num

2.2.1.3 Syntax

<type definition>::=
[LOCAL] (<record definition>

| <alias definition>)
| <comment>
| <TDN>

<record definition>::=
RECORD <identifier>
 <record component list>
ENDRECORD

<record component list> ::=
<record component definition> |
<record component definition> <record component list>

<record component definition> ::=
<data type> <record component name> ’;’

<alias definition> ::=
ALIAS <data type> <identifier> ’;’

<data type> ::= <identifier>
3HAC16580-1 Revision: G38

2 Basic RAPID programming
2.2.2 Data declarations

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.2.2 Data declarations

There are three kinds of data: variables, persistents and constants.

- A variable can be assigned a new value during program execution.
- A persistent can be described as a “persistent” variable. This is accomplished

by letting an update of the value of a persistent automatically cause the
initialisation value of the persistent declaration to be updated. (When a program
is saved the initialisation value of any persistent declaration reflects the current
value of the persistent.)

- A constant represents a static value and cannot be assigned a new value.

A data declaration introduces data by associating a name (identifier) with a data type.
Except for predefined data and loop variables, all data used must be declared.

2.2.2.1 Data scope

The scope of data denotes the area in which the data is visible. The optional local
directive of a data declaration classifies data as local (within the module), otherwise it
is global. Note that the local directive may only be used at module level, not inside a
routine.

Example: LOCAL VAR num local_variable;
VAR num global_variable;

Data declared outside a routine is called program data. The following scope rules
apply to program data:

- The scope of predefined or global program data may include any module.
- The scope of local program data comprises the module in which it is contained.
- Within its scope, local program data hides any global data or routine with the

same name (including instructions and predefined routines and data).

Program data may not have the same name as other data or a routine in the same
module. Global program data may not have the same name as other global data or a
routine in another module.

Data declared inside a routine is called routine data. Note that the parameters of a
routine are also handled as routine data. The following scope rules apply to routine
data:

- The scope of routine data comprises the routine in which it is contained.
- Within its scope, routine data hides any other routine or data with the same

name.
393HAC16580-1 Revision: G

2 Basic RAPID programming
2.2.2 Data declarations

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
See the example in Figure 4.

Figure 4 Example: The following data can be called from routine e:
Module1: Data c, d.
Module2: Data a, f, g, e1.
The following data can be called from routine h:
Module1: Data d.
Module2: Data a, f, g, h1, c.

Routine data may not have the same name as other data or a label in the same routine.

2.2.2.2 Variable declaration

A variable is introduced by a variable declaration and can be declared as system global,
task global or local.

Example: VAR num globalvar := 123;
TASK VAR num taskvar := 456;
LOCAL VAR num localvar := 789;

Variables of any type can be given an array (of degree 1, 2 or 3) format by adding
dimensional information to the declaration. A dimension is an integer value greater
than 0.
Example: VAR pos pallet{14, 18};

Variables with value types may be initialised (given an initial value). The expression
used to initialise a program variable must be constant. Note that the value of an
uninitialized variable may be used, but it is undefined, i.e. set to zero.

Example: VAR string author_name := “John Smith”;
VAR pos start := [100, 100, 50];
VAR num maxno{10} := [1, 2, 3, 9, 8, 7, 6, 5, 4, 3];

The initialisation value is set when:

- the program is opened,
- the program is executed from the beginning of the program.

Module1 Module2

Local Data a

Local Data b

Data c

Data d

Data e

Local Data a

Local Data f

Data g

Local Routine e

Routine h

Data e1

Data h1
Data c
3HAC16580-1 Revision: G40

2 Basic RAPID programming
2.2.2 Data declarations

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.2.2.3 Persistent declaration

Persistents can only be declared at module level, not inside a routine. Persistents can
be declared as system global, task global or local.

Example: PERS num globalpers := 123;
TASK PERS num taskpers := 456;
LOCAL PERS num localpers := 789;

All system global persistents with the same name share current value. Task global and
local persistents do not share current value with other persistents.
Local and task global persistents must be given an initialisation value. For system
global persistents the initial value may be omitted. The initialisation value must be a
single value (without data references or operands), or a single aggregate with members
which, in turn, are single values or single aggregates.
Example: PERS pos refpnt := [100.23, 778.55, 1183.98];

Persistents of any type can be given an array (of degree 1, 2 or 3) format by adding
dimensional information to the declaration. A dimension is an integer value greater
than 0.

Example: PERS pos pallet{14, 18} := [...];

Note that if the current value of a persistent is changed, this causes the initialisation
value (if not omitted) of the persistent declaration to be updated. However, due to
performance issues this update will not take place during program execution. The
initial value will be updated when the module is saved (Backup, Save Module, Save
Program). It will also be updated when editing program. The program data window on
the FlexPendant will always show the current value of the persistent.

Example: PERS num reg1 := 0;
 ...
reg1 := 5;
After module save, the saved module looks like this:
PERS num reg1 := 5;
 ...
reg1 := 5;

2.2.2.4 Constant declaration

A constant is introduced by a constant declaration. The value of a constant cannot be
modified.
Example: CONST num pi := 3.141592654;

A constant of any type can be given an array (of degree 1, 2 or 3) format by adding
dimensional information to the declaration. A dimension is an integer value greater
than 0.
413HAC16580-1 Revision: G

2 Basic RAPID programming
2.2.2 Data declarations

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Example: CONST pos seq{3} := [[614, 778, 1020],
[914, 998, 1021],
[814, 998, 1022]];

2.2.2.5 Initiating data

The initialisation value for a constant or variable can be a constant expression.
The initialisation value for a persistent can only be a literal expression.

Example: CONST num a := 2;
CONST num b := 3;
! Correct syntax
CONST num ab := a + b;
VAR num a_b := a + b;
PERS num a__b := 5;
! Faulty syntax
PERS num a__b := a + b;

In the table below, you can see what is happening in various activities such as warm
start, new program, program start etc.

* Generates an error when there is a semantic error in the actual task program.
** Persistents without initial value is only initialized if not already declared

System
event

Affects

Power on
(Warm
start)

Open, Close
or New

program

Start
program
(Move PP
to main)

Start
program
(Move PP

to Routine)

Start
program
(Move PP
to cursor)

Start
program

(Call
Routine)

Start
program

(After cycle)

Start
program

(After stop)

Constant Unchanged Init Init Init Unchanged Unchanged Unchanged Unchanged

Variable Unchanged Init Init Init Unchanged Unchanged Unchanged Unchanged

Persistent Unchanged Init**/
Unchanged

Unchanged Unchanged Unchanged Unchanged Unchanged Unchanged

Commanded
interrupts

Re-ordered Disappears Disappears Disappears Unchanged Unchanged Unchanged Unchanged

Start up
routine

SYS_RESET
(with motion

settings)

Not run Run* Run Not run Not run Not run Not run Not run

Files Closes Closes Closes Closes Unchanged Unchanged Unchanged Unchanged

Path Recreated at
power on

Disappears Disappears Disappears Disappears Unchanged Unchanged Unchanged
3HAC16580-1 Revision: G42

2 Basic RAPID programming
2.2.2 Data declarations

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.2.2.6 Storage class

The storage class of a data object determines when the system allocates and de-
allocates memory for the data object. The storage class of a data object is determined
by the kind of data object and the context of its declaration and can be either static or
volatile.

Constants, persistents, and module variables are static, i.e. they have the same storage
during the lifetime of a task. This means that any value assigned to an persistent or a
module variable, always remains unchanged until the next assignment.

Routine variables are volatile. The memory needed to store the value of a volatile
variable is allocated first upon the call of the routine in which the declaration of the
variable is contained. The memory is later de-allocated at the point of the return to the
caller of the routine. This means that the value of a routine variable is always undefined
before the call of the routine and is always lost (becomes undefined) at the end of the
execution of the routine.

In a chain of recursive routine calls (a routine calling itself directly or indirectly) each
instance of the routine receives its own memory location for the “same” routine
variable - a number of instances of the same variable are created.

2.2.2.7 Syntax

Data declaration

<data declaration> ::=
[LOCAL] (<variable declaration>
 | <persistent declaration>
 | <constant declaration>)
| TASK <persistent declaration>
| <comment>
| <DDN>

Variable declaration

<variable declaration> ::=
VAR <data type> <variable definition> ’;’

<variable definition> ::=
<identifier> [’{’ <dim> { ’,’ <dim> } ’}’]

[’:=’ <constant expression>]
<dim> ::= <constant expression>

Persistent declaration

<persistent declaration> ::=
PERS <data type> <persistent definition> ’;’
433HAC16580-1 Revision: G

2 Basic RAPID programming
2.2.2 Data declarations

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
<persistent definition> ::=
<identifier> [’{’ <dim> { ’,’ <dim> } ’}’]

[’:=’ <literal expression>]
Note! The literal expression may only be omitted for system global persistents.

Constant declaration

<constant declaration> ::=
CONST <data type> <constant definition> ’;’

<constant definition> ::=
<identifier> [’{’ <dim> { ’,’ <dim> } ’}’]

’:=’ <constant expression>
<dim> ::= <constant expression>
3HAC16580-1 Revision: G44

2 Basic RAPID programming
2.3 Expressions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.3 Expressions

An expression specifies the evaluation of a value. It can be used, for example:

- in an assignment instruction e.g. a:=3*b/c;
- as a condition in an IF instruction e.g. IF a>=3 THEN ...
- as an argument in an instruction e.g. WaitTime time;
- as an argument in a function call e.g. a:=Abs(3*b);

2.3.1 Arithmetic expressions

An arithmetic expression is used to evaluate a numeric value.

Example: 2*pi*radius

1. The result receives the same type as the operand. If the operand has an alias
data type, the result receives the alias "base" type (num or pos).

2. Integer operations, e.g. 14 DIV 4=3, 14 MOD 4=2.
(Non-integer operands are illegal.)

3. Preserves integer (exact) representation as long as operands and result are kept
within the integer subdomain of the num type.

Operator Operation Operand types Result type

+ addition num + num num3)

+ unary plus; keep sign +num or +pos same1)3)

+ vector addition pos + pos pos
- subtraction num - num num3)

- unary minus; change sign -num or -pos same1)3)

- vector subtraction pos - pos pos
* multiplication num * num num3)

* scalar vector multiplication num * pos or pos * num pos
* vector product pos * pos pos
* linking of rotations orient * orient orient
/ division num / num num
DIV 2) integer division num DIV num num
MOD 2) integer modulo; remainder num MOD num num
453HAC16580-1 Revision: G

2 Basic RAPID programming
2.3.2 Logical expressions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.3.2 Logical expressions

A logical expression is used to evaluate a logical value (TRUE/FALSE).

Example: a>5 AND b=3

1) Only value data types. Operands must have equal types.

Operator Operation Operand types Result type

< less than num < num bool
<= less than or equal to num <= num bool
= equal to any 1)= any 1) bool
>= greater than or equal to num >= num bool
> greater than num > num bool
<> not equal to any 1) <> any 1) bool
AND and bool AND bool bool
XOR exclusive or bool XOR bool bool
OR or bool OR bool bool
NOT unary not; negation NOT bool bool

a AND b
a

b
True False

True
False

True False
FalseFalse

a XOR b
a

b
True False

True
False

False True
FalseTrue

a OR b
a

b
True False

True
False

True True
FalseTrue

NOT b

b
True

False
False
True
3HAC16580-1 Revision: G46

2 Basic RAPID programming
2.3.3 String expressions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.3.3 String expressions

A string expression is used to carry out operations on strings.

Example: “IN” + “PUT” gives the result “INPUT”

2.3.4 Using data in expressions

An entire variable, persistent or constant can be a part of an expression.

Example: 2*pi*radius

2.3.4.1 Arrays

A variable, persistent or constant declared as an array can be referenced to the whole
array or a single element.

An array element is referenced using the index number of the element. The index is an
integer value greater than 0 and may not violate the declared dimension. Index value 1
selects the first element. The number of elements in the index list must fit the declared
degree (1, 2 or 3) of the array.

Example: VAR num row{3};
VAR num column{3};
VAR num value;

.
value := column{3};only one element in the array
row := column;all elements in the array

2.3.4.2 Records

A variable, persistent or constant declared as a record can be referenced to the whole
record or a single component.

A record component is referenced using the component name.

Operator Operation Operand types Result type

+ string concatenation string + string string
473HAC16580-1 Revision: G

2 Basic RAPID programming
2.3.5 Using aggregates in expressions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Example: VAR pos home;
VAR pos pos1;
VAR num yvalue;
..
yvalue := home.y; the Y component only
pos1 := home; the whole position

2.3.5 Using aggregates in expressions

An aggregate is used for record or array values.

Example: pos := [x, y, 2*x]; pos record aggregate
posarr := [[0, 0, 100], [0,0,z]]; pos array aggregate

It must be possible to determine the data type of an aggregate the context. The data type
of each aggregate member must be equal to the type of the corresponding member of
the determined type.

Example VAR pos pl;
p1 :=[1, -100, 12]; aggregate type pos - determined by p1
IF [1, -100, 12] = [a,b,b,] THENillegal since the data type of neither of

the aggregates can be determined by
the context.

2.3.6 Using function calls in expressions

A function call initiates the evaluation of a specific function and receives the value
returned by the function.

Example: Sin(angle)

The arguments of a function call are used to transfer data to (and possibly from) the
called function. The data type of an argument must be equal to the type of the
corresponding parameter of the function. Optional arguments may be omitted but the
order of the (present) arguments must be the same as the order of the formal
parameters. In addition, two or more optional arguments may be declared to exclude
each other, in which case, only one of them may be present in the argument list.

A required (compulsory) argument is separated from the preceding argument by a
comma “,”. The formal parameter name may be included or omitted.

Example: Polar(3.937, 0.785398) two required arguments
Polar(Dist:=3.937, Angle:=0.785398) ... using names
3HAC16580-1 Revision: G48

2 Basic RAPID programming
2.3.7 Priority between operators

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
An optional argument must be preceded by a backslash “\” and the formal parameter
name. A switch type argument is somewhat special; it may not include any argument
expression. Instead, such an argument can only be either "present" or "not present".

Example: Cosine(45) one required argument
Cosine(0.785398\Rad) ... and one switch
Dist(p2) one required argument
Dist(\distance:=pos1, p2) ... and one optional

Conditional arguments are used to support smooth propagation of optional arguments
through chains of routine calls. A conditional argument is considered to be “present”
if the specified optional parameter (of the calling function) is present, otherwise it is
simply considered to be omitted. Note that the specified parameter must be optional.

Example: PROC Read_from_file (iodev File \num Maxtime)
..
character:=ReadBin (File \Time?Maxtime);

! Max. time is only used if specified when calling the routine
! Read_from_file

..
ENDPROC

The parameter list of a function assigns an access mode to each parameter. The access
mode can be either in, inout, var or pers:

- An IN parameter (default) allows the argument to be any expression. The called
function views the parameter as a constant.

- An INOUT parameter requires the corresponding argument to be a variable
(entire, array element or record component) or an entire persistent. The called
function gains full (read/write) access to the argument.

- A VAR parameter requires the corresponding argument to be a variable (entire,
array element or record component). The called function gains full (read/write)
access to the argument.

- A PERS parameter requires the corresponding argument to be an entire
persistent. The called function gains full (read/update) access to the argument.

2.3.7 Priority between operators

The relative priority of the operators determines the order in which they are evaluated.
Parentheses provide a means to override operator priority. The rules below imply the
following operator priority:

* / DIV MOD- highest
+ -
< > <> <= >= =
AND
493HAC16580-1 Revision: G

2 Basic RAPID programming
2.3.8 Example

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
XOR OR NOT - lowest

An operator with high priority is evaluated prior to an operator with low priority.
Operators of the same priority are evaluated from left to right.

2.3.8 Example

2.3.9 Syntax

2.3.9.1 Expressions

<expression> ::=
<expr>
| <EXP>

<expr> ::= [NOT] <logical term> { (OR | XOR) <logical term> }
<logical term> ::= <relation> { AND <relation> }
<relation> ::= <simple expr> [<relop> <simple expr>]
<simple expr> ::= [<addop>] <term> { <addop> <term> }
<term> ::= <primary> { <mulop> <primary> }
<primary> ::=

<literal>
| <variable>
| <persistent>
| <constant>
| <parameter>
| <function call>
| <aggregate>
| ’(’ <expr> ’)’

2.3.9.2 Operators

<relop> ::= ’<’ | ’<=’ | ’=’ | ’>’ | ’>=’ | ’<>’
<addop> ::= ’+’ | ’-’
<mulop> ::= ’*’ | ’/’ | DIV | MOD

Expression Evaluation order Comment

a + b + c (a + b) + c left to right rule

a + b * c a + (b * c) * higher than +

a OR b OR c (a OR b) OR c Left to right rule

a AND b OR c AND d (a AND b) OR (c AND d) AND higher than OR

a < b AND c < d (a < b) AND (c < d) < higher than AND
3HAC16580-1 Revision: G50

2 Basic RAPID programming
2.3.9 Syntax

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.3.9.3 Constant values

<literal> ::= <num literal>
| <string literal>
| <bool literal>

2.3.9.4 Data

<variable> ::=
<entire variable>
| <variable element>
| <variable component>

<entire variable> ::= <ident>
<variable element> ::= <entire variable> ’{’ <index list> ’}’
<index list> ::= <expr> { ’,’ <expr> }
<variable component> ::= <variable> ’.’ <component name>
<component name> ::= <ident>
<persistent> ::=

<entire persistent>
| <persistent element>
| <persistent component>

<constant> ::=
<entire constant>
| <constant element>
| <constant component>

2.3.9.5 Aggregates

<aggregate> ::= ’[’ <expr> { ’,’ <expr> } ’]’

2.3.9.6 Function calls

<function call> ::= <function> ’(’ [<function argument list>] ’)’
<function> ::= <ident>
<function argument list> ::= <first function argument> { <function argument> }
<first function argument> ::=

<required function argument>
| <optional function argument>
| <conditional function argument>

<function argument> ::=
’,’ <required function argument>
| <optional function argument>
| ’,’ <optional function argument>
| <conditional function argument>
513HAC16580-1 Revision: G

2 Basic RAPID programming
2.3.9 Syntax

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
| ’,’ <conditional function argument>
<required function argument> ::= [<ident> ’:=’] <expr>
<optional function argument> ::= ’\’ <ident> [’:=’ <expr>]
<conditional function argument> ::= ’\’ <ident> ’?’ <parameter>

2.3.9.7 Special expressions

<constant expression> ::= <expression>
<literal expression> ::= <expression>
<conditional expression> ::= <expression>

2.3.9.8 Parameters

<parameter> ::=
<entire parameter>
| <parameter element>
| <parameter component>
3HAC16580-1 Revision: G52

2 Basic RAPID programming
2.4 Instructions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.4 Instructions

Instructions are executed in succession unless a program flow instruction or an
interrupt or error causes the execution to continue at some other place.

Most instructions are terminated by a semicolon “;”. A label is terminated by a colon
“:”. Some instructions may contain other instructions and are terminated by specific
keywords:

Example: WHILE index < 100 DO
.

 index := index + 1;
ENDWHILE

All instructions are collected into specific groups, which are described in the following
sections. This grouping is the same as can be found in the pick lists used when adding
new instructions to a program on the FlexPendant program editor.

2.4.1 Syntax

<instruction list> ::= { <instruction> }
<instruction> ::=

[<instruction according to separate chapter in this manual>
| <SMT>

Instruction Termination word

IF ENDIF

FOR ENDFOR

WHILE ENDWHILE

TEST ENDTEST
533HAC16580-1 Revision: G

2 Basic RAPID programming
2.4.1 Syntax

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3HAC16580-1 Revision: G54

2 Basic RAPID programming
2.5 Controlling the program flow

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.5 Controlling the program flow

The program is executed sequentially as a rule, i.e. instruction by instruction.
Sometimes, instructions which interrupt this sequential execution and call another
instruction are required to handle different situations that may arise during execution.

2.5.1 Programming principles

The program flow can be controlled according to five different principles:

- By calling another routine (procedure) and, when that routine has been
executed, continuing execution with the instruction following the routine call.

- By executing different instructions depending on whether or not a given
condition is satisfied.

- By repeating a sequence of instructions a number of times or until a given
condition is satisfied.

- By going to a label within the same routine.
- By stopping program execution.

2.5.2 Calling another routine

Instruction Used to:

ProcCall Call (jump to) another routine

CallByVar Call procedures with specific names

RETURN Return to the original routine
553HAC16580-1 Revision: G

2 Basic RAPID programming
2.5.3 Program control within the routine

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.5.3 Program control within the routine

2.5.4 Stopping program execution

2.5.5 Stop current cycle

Instruction Used to:

Compact IF Execute one instruction only if a condition is satisfied

IF Execute a sequence of different instructions depending on whether or not
a condition is satisfied

FOR Repeat a section of the program a number of times

WHILE Repeat a sequence of different instructions as long as a given condition is
satisfied

TEST Execute different instructions depending on the value of an expression

GOTO Jump to a label

label Specify a label (line name)

Instruction Used to:

Stop Stop program execution

EXIT Stop program execution when a program restart is not allowed

Break Stop program execution temporarily for debugging purposes

SystemStopAction Stop program execution and robot movement

Instruction Used to:
ExitCycle Stop the current cycle and move the program pointer to the first instruction

in the main routine. When the execution mode CONT is selected,
execution will continue with the next program cycle.
3HAC16580-1 Revision: G56

2 Basic RAPID programming
2.6 Various instructions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.6 Various instructions

Various instructions are used to

- assign values to data
- wait a given amount of time or wait until a condition is satisfied
- insert a comment into the program
- load program modules.

2.6.1 Assigning a value to data

Data can be assigned an arbitrary value. It can, for example, be initialised with a
constant value, e.g. 5, or updated with an arithmetic expression, e.g. reg1+5*reg3.

2.6.2 Wait

The robot can be programmed to wait a given amount of time, or to wait until an
arbitrary condition is satisfied; for example, to wait until an input is set.

2.6.3 Comments

Comments are only inserted into the program to increase its readability. Program
execution is not affected by a comment.

Instruction Used to:
:= Assign a value to data

Instruction Used to:

WaitTime Wait a given amount of time or to wait until the robot stops moving

WaitUntil Wait until a condition is satisfied

WaitDI Wait until a digital input is set

WaitDO Wait until a digital output is set

Instruction Used to:

comment Comment on the program
573HAC16580-1 Revision: G

2 Basic RAPID programming
2.6.4 Loading program modules

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.6.4 Loading program modules

Program modules can be loaded from mass memory or erased from the program
memory. In this way large programs can be handled with only a small memory.

2.6.5 Various functions

Instruction Used to:

Load Load a program module into the program memory

UnLoad Unload a program module from the program memory

Start Load Load a program module into the program memory during execution

Wait Load Connect the module, if loaded with StartLoad, to the program task

CancelLoad Cancel the loading of a module that is being or has been loaded with the
instruction StartLoad

CheckProgRef Check program references

Save Save a program module

EraseModule Erase a module from the program memory.

Data type Used to:

loadsession Program a load session

Instruction Used to:

TryInt Test if data object is a valid integer

Function Used to:

OpMode Read the current operating mode of the robot

RunMode Read the current program execution mode of the robot

NonMotionMode Read the current Non-Motion execution mode of the program task

Dim Obtain the dimensions of an array

Present Find out whether an optional parameter was present when a routine call
was made

IsPers Check whether a parameter is a persistent

IsVar Check whether a parameter is a variable
3HAC16580-1 Revision: G58

2 Basic RAPID programming
2.6.6 Basic data

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.6.6 Basic data

2.6.7 Conversion function

Data type Used to define:
bool Logical data (with the values true or false)

num Numeric values (decimal or integer)

symnum Numeric data with symbolic value

string Character strings

switch Routine parameters without value

Function Used to:

StrToByte Convert a byte to a string data with a defined byte data format.

ByteToStr Convert a string with a defined byte data format to a byte data.
593HAC16580-1 Revision: G

2 Basic RAPID programming
2.6.7 Conversion function

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3HAC16580-1 Revision: G60

2 Basic RAPID programming
2.7 Motion settings

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.7 Motion settings

Some of the motion characteristics of the robot are determined using logical
instructions that apply to all movements:

- Maximum TCP speed
- Maximum velocity and velocity override
- Acceleration
- Management of different robot configurations
- Payload
- Behaviour close to singular points
- Program displacement
- Soft servo
- Tuning values

2.7.1 Programming principles

The basic characteristics of the robot motion are determined by data specified for each
positioning instruction. Some data, however, is specified in separate instructions which
apply to all movements until that data changes.

The general motion settings are specified using a number of instructions, but can also
be read using the system variable C_MOTSET or C_PROGDISP.

Default values are automatically set (by executing the routine SYS_RESET in system
module BASE)

- at a cold start-up,
- when a new program is loaded,
- when the program is started from the beginning.
613HAC16580-1 Revision: G

2 Basic RAPID programming
2.7.2 Maximum TCP speed

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.7.2 Maximum TCP speed

2.7.3 Defining velocity

The absolute velocity is programmed as an argument in the positioning instruction. In
addition to this, the maximum velocity and velocity override (a percentage of the
programmed velocity) can be defined.

2.7.4 Defining acceleration

When fragile parts, for example, are handled, the acceleration can be reduced for part
of the program.

2.7.5 Defining configuration management

The robot’s configuration is normally checked during motion. If joint (axis-by-axis)
motion is used, the correct configuration will be achieved. If linear or circular motion
are used, the robot will always move towards the closest configuration, but a check is
performed to see if it is the same as the programmed one. It is possible to change this,
however.

Function Used to:
MaxRobSpeed Return the maximum TCP speed for the used robot type

Instruction Used to define:
VelSet The maximum velocity and velocity override

SpeedRefresh Update speed override for ongoing movement

Instruction Used to:
AccSet Define the maximum acceleration.

WorldAccLim Limiting the acceleration/deceleration of the tool (and gripload) in the world
coordinate system.

PathAccLim Set or reset limitations on TCP acceleration and/or TCP deceleration along
the movement path.

Instruction Used to define:
ConfJ Configuration control on/off during joint motion

ConfL Configuration check on/off during linear motion
3HAC16580-1 Revision: G62

2 Basic RAPID programming
2.7.6 Defining the payload

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.7.6 Defining the payload

To achieve the best robot performance, the correct payload must be defined.

2.7.7 Defining the behaviour near singular points

The robot can be programmed to avoid singular points by changing the tool orientation
automatically.

Instruction Used to define:
GripLoad The payload of the gripper

Instruction Used to define:
SingArea The interpolation method through singular points
633HAC16580-1 Revision: G

2 Basic RAPID programming
2.7.8 Displacing a program

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.7.8 Displacing a program

When part of the program must be displaced, e.g. following a search, a program
displacement can be added.

2.7.9 Soft servo

One or more of the robot axes can be made “soft”. When using this function, the robot
will be compliant and can replace, for example, a spring tool.

Instruction Used to:
PDispOn Activate program displacement

PDispSet Activate program displacement by specifying a value

PDispOff Deactivate program displacement

EOffsOn Activate an external axis offset

EOffsSet Activate an external axis offset by specifying a value

EOffsOff Deactivate an external axis offset

Function Used to:

DefDFrame Calculate a program displacement from three positions

DefFrame Calculate a program displacement from six positions

ORobT Remove program displacement from a position

DefAccFrame Define a frame from original positions and displaced positions

Instruction Used to:

SoftAct Activate the soft servo for one or more axes

SoftDeact Deactivate the soft servo

DitherActa

a. Only for IRB 7600

Enables dither functionality for soft servo

DitherDeacta Disables dither functionality for soft servo
3HAC16580-1 Revision: G64

2 Basic RAPID programming
2.7.10 Adjust the robot tuning values

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.7.10 Adjust the robot tuning values

In general, the performance of the robot is self-optimising; however, in certain extreme
cases, overrunning, for example, can occur. You can adjust the robot tuning values to
obtain the required performance.

2.7.11 World zones

Up to 10 different volumes can be defined within the working area of the robot. These
can be used for:

- Indicating that the robot’s TCP is a definite part of the working area.
- Delimiting the working area for the robot and preventing a collision with the

tool.
- Creating a working area common to two robots. The working area is then

available only to one robot at a time.

Instruction Used to:
TuneServo Adjust the robot tuning values

TuneReset Reset tuning to normal

PathResol Adjust the geometric path resolution

CirPathMode Choose the way the tool reorientates during circular interpolation.

Data type Used to:
tunetype Represent the tuning type as a symbolic constant

Instruction Used to:

WZBoxDefa

a. Only when the robot is equipped with the option “World zones”

Define a box-shaped global zone

WZCylDef a Define a cylindrical global zone

WZSphDef a Define a spherical global zone

WZHomeJointDef a Define a global zone in joints coordinates

WZLimJointDef a Define a global zone in joints coordinates for limitation of working area.

WZLimSupa Activate limit supervision for a global zone

WZDOSeta Activate global zone to set digital outputs

WZDisablea Deactivate supervision of a temporary global zone

WZEnablea Activate supervision of a temporary global zone

WZFreea Erase supervision of a temporary global zone
653HAC16580-1 Revision: G

2 Basic RAPID programming
2.7.12 Various for motion settings

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.7.12 Various for motion settings

Data type Used to:

wztemporarya Identify a temporary global zone

wzstationarya Identify a stationary global zone

shapedataa Describe the geometry of a global zone

Instruction Used to:
WaitRob Wait until the robot and external axis have reached stop point or have zero

speed.

Data type Used to:

motsetdata Motion settings except program displacement

progdisp Program displacement
3HAC16580-1 Revision: G66

2 Basic RAPID programming
2.8 Motion

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.8 Motion

The robot movements are programmed as pose-to-pose movements, i.e. “move from
the current position to a new position”. The path between these two positions is then
automatically calculated by the robot.

2.8.1 Programming principles

The basic motion characteristics, such as the type of path, are specified by choosing the
appropriate positioning instruction.

The remaining motion characteristics are specified by defining data which are
arguments of the instruction:

- Position data (end position for robot and external axes)
- Speed data (desired speed)
- Zone data (position accuracy)
- Tool data (e.g. the position of the TCP)
- Work-object data (e.g. the current coordinate system)

Some of the motion characteristics of the robot are determined using logical
instructions which apply to all movements (See 2.7 Motion settings on page 61):

- Maximum velocity and velocity override
- Acceleration
- Management of different robot configurations
- Payload
- Behaviour close to singular points
- Program displacement
- Soft servo
- Tuning values

Both the robot and the external axes are positioned using the same instructions. The
external axes are moved at a constant velocity, arriving at the end position at the same
time as the robot.
673HAC16580-1 Revision: G

2 Basic RAPID programming
2.8.2 Positioning instructions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.8.2 Positioning instructions

2.8.3 Searching

During the movement, the robot can search for the position of a work object, for
example. The searched position (indicated by a sensor signal) is stored and can be used
later to position the robot or to calculate a program displacement.

2.8.4 Activating outputs or interrupts at specific positions

Normally, logical instructions are executed in the transition from one positioning
instruction to another. If, however, special motion instructions are used, these can be
executed instead when the robot is at a specific position.

Instruction Type of movement:

MoveC TCP moves along a circular path

MoveJ Joint movement

MoveL TCP moves along a linear path

MoveAbsJ Absolute joint movement

MoveExtJ Moves a linear or rotational external axis without TCP

MoveCDO Moves the robot circularly and sets a digital output in the middle of the
corner path.

MoveJDO Moves the robot by joint movement and sets a digital output in the middle
of the corner path.

MoveLDO Moves the robot linearly and sets a digital output in the middle of the corner
path.

MoveCSync Moves the robot circularly and executes a RAPID procedure

MoveJSync Moves the robot by joint movement and executes a RAPID procedure

MoveLSync Moves the robot linearly and executes a RAPID procedure

Instruction Type of movement:

SearchC TCP along a circular path

SearchL TCP along a linear path

SearchExtJ Joint movement of mec. unit without TCP

Instruction Used to:
TriggIO Define a trigg condition to set an output at a given position

TriggInt Define a trigg condition to execute a trap routine at a given position

TriggCheckIO Define an IO check at a given position
3HAC16580-1 Revision: G68

2 Basic RAPID programming
2.8.5 Control of analog output signal proportional to actual TCP

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.8.5 Control of analog output signal proportional to actual TCP

TriggSpeed Define conditions and actions for control of an analog output
signal with output value proportional to the actual TCP speed.

2.8.6 Motion control if an error/interrupt takes place

In order to rectify an error or an interrupt, motion can be stopped temporarily and then
restarted again.

TriggEquip Define a trigg condition to set an output at a given position with the
possibility to include time compensation for the lag in the external
equipment

TriggRampAO Define a trigg condition to ramp up or down analog output signal at a given
position with the possibility to include time compensation for the lag in the
external equipment

TriggC Run the robot (TCP) circularly with an activated trigg condition

TriggJ Run the robot axis-by-axis with an activated trigg condition

TriggL Run the robot (TCP) linearly with an activated trigg condition

TriggLIOs Run the robot (TCP) linearly with an activated I/O trigg condition

StepBwdPath Move backwards on its path in a RESTART event routine

TriggStopProc Create an internal supervision process in the system for zero setting of
specified process signals and the generation of restart data in a specified
persistent variable at every program stop (STOP) or emergency stop
(QSTOP) in the system.

Data type Used to define:

triggdata Trigg conditions

aiotrigg Analogue I/O trigger condition

restartdata Data for TriggStopProc

triggios Trigg conditions for TriggLIOs

triggstrgo Trigg conditions for TriggLIOs

Instruction Used to:

StopMove Stop the robot movements

StartMove Restart the robot movements

StartMoveRetry Restart the robot movements and make a retry in one indivisible sequence

StopMoveReset Reset the stop move status, but don’t start the robot movements

Instruction Used to:
693HAC16580-1 Revision: G

2 Basic RAPID programming
2.8.7 Get robot info in a MultiMove system

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.8.7 Get robot info in a MultiMove system

Used to retrieve name or reference to the robot in current program task.

StorePatha Store the last path generated

RestoPatha Regenerate a path stored earlier

ClearPath Clear the whole motion path on the current motion path level.

PathLevel Get the current path level.

SyncMoveSuspenda Suspend synchronized coordinated movements on StorePath level.

SyncMoveResumea Resume synchronized coordinated movements on StorePath level.

a. Only if the robot is equipped with the option “Path recovery”

Function Used to:

IsStopMoveAct Get status of the stop move flags.

Function Used to:

RobName Get the controlled robot name in current program task, if any.

Data Used to:

ROB_ID Get data containing a reference to the controlled robot in current program
task, if any.

Instruction Used to:
3HAC16580-1 Revision: G70

2 Basic RAPID programming
2.8.8 Controlling external axes

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.8.8 Controlling external axes

The robot and external axes are usually positioned using the same instructions. Some
instructions, however, only affect the external axis movements.

2.8.9 Independent axes

The robot axis 6 (and 4 on IRB 2400 /4400) or an external axis can be moved
independently of other movements. The working area of an axis can also be reset,
which will reduce the cycle times.

Instruction Used to:

DeactUnit Deactivate an external mechanical unit

ActUnit Activate an external mechanical unit

MechUnitLoad Defines a payload for a mechanical unit

Function Used to:

GetNextMechUnit Retrieving name of mechanical units in the robot system

IsMechUnitActive Check whether a mechanical unit is activated or not

Instruction Used to:

IndAMovea

a. Only if the robot is equipped with the option “Independent movement”.

Change an axis to independent mode and move the axis to an absolute
position

IndCMovea Change an axis to independent mode and start the axis moving continu-
ously.

IndDMovea Change an axis to independent mode and move the axis a delta distance

IndRMovea Change an axis to independent mode and move the axis to a relative
position (within the axis revolution)

IndReseta Change an axis to dependent mode or/and reset the working area

HollowWristResetb

b. Only if the robot is equiped with the option “Independent movement”. The Instruction Hol-
lowWristReset can only be used on Robot IRB 5402 AND IRB 5403.

Reset the position of the wrist joints on hollow wrist manipulators, such as
IRB 5402 and IRB 5403.

Function Used to:

IndInposa Check whether an independent axis is in position

IndSpeeda Check whether an independent axis has reached programmed speed
713HAC16580-1 Revision: G

2 Basic RAPID programming
2.8.10 Path correction

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.8.10 Path correction

2.8.11 Path Recorder

Instruction Used to:

CorrCona

a. Only if the robot is eqiped with the option “Path offset or RobotWare-Arc sensor”.

Connect to a correction generator

CorrWritea Write offsets in the path coordinate system to a correction generator

CorrDiscona Disconnect from a previously connected correction generator

CorrCleara Remove all connected correction generators

Function Used to:

CorrReada Read the total corrections delivered by all connected correction generators

Data type Used to:

corrdescra Add geometric offsets in the path coordinate system

Instruction Used to:

PathRecStarta

a. Only if the robot is equipped with the option “Path recovery”.

Start recording the robot´s path

PathRecStopa Stop recording the robot´s path

PathRecMoveBwda Move the robot backwards along a recorded path

PathRecMoveFwda Move the robot back to the position where PathRecMoveBwd was
executed

Function Used to:

PathRecValidBwda Check if the path recorder is active and if a recorded backward path is
available

PathRecValidFwda Check if the path recorder can be used to move forward

Data type Used to:

pathrecid Identify a breakpoint for the path recorder
3HAC16580-1 Revision: G72

2 Basic RAPID programming
2.8.12 Conveyor tracking

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.8.12 Conveyor tracking

2.8.13 Sensor synchronization

Sensor Synchronization, is the function whereby the robot speed follows a sensor
which can be mounted on a moving conveyor or a press motor axis .

2.8.14 Load identification and collision detection

Instruction Used to:

WaitWObja

a. Only if the robot is equipped with the option “Conveyor tracking”.

Wait for work object on conveyor

DropWObja Drop work object on conveyor

Instruction Used to:

WaitSensora

a. Only if the robot is equipped with the option “Sensor synchronization”.

Connect to an object in the start window on a sensor mechanical unit.

SyncToSensora Start or stop synchronization of robot movement to sensor movement.

DropSensora Disconnect from the current object.

Instruction Used to:

MotionSupa

a. Only if the robot is equipped with the option “Collision detection”.

Deactivates/activates motion supervision

ParIdPosValid Valid robot position for parameter identification

ParIdRobValid Valid robot type for parameter identification

LoadId Load identification of tool or payload

ManLoadId Load identification of external manipulator

Data type Used to:

loadidnum Represent an integer with a symbolic constant

paridnum Represent an integer with a symbolic constant

paridvalidnum Represent an integer with a symbolic constant
733HAC16580-1 Revision: G

2 Basic RAPID programming
2.8.15 Position functions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.8.15 Position functions

2.8.16 Check interrupted path after power failure

2.8.17 Status functions

2.8.18 Motion data

Motion data is used as an argument in the positioning instructions.

Function Used to:

Offs Add an offset to a robot position, expressed in relation to the work object

RelTool Add an offset, expressed in the tool coordinate system

CalcRobT Calculates robtarget from jointtarget

CPos Read the current position (only x, y, z of the robot)

CRobT Read the current position (the complete robtarget)

CJointT Read the current joint angles

ReadMotor Read the current motor angles

CTool Read the current tooldata value

CWObj Read the current wobjdata value

ORobT Remove a program displacement from a position

MirPos Mirror a position

CalcJointT Calculates joint angles from robtarget

Distance The distance between two positions

Function Used to:

PFRestart Check if the path has been interrupted at power failure.

Function Used to:

CSpeedOverride Read the speed override set by the operator from the Program or
Production Window.

Data type Used to define:

robtarget The end position

jointtarget The end position for a MoveAbsJ or MoveExtJ instruction
3HAC16580-1 Revision: G74

2 Basic RAPID programming
2.8.19 Basic data for movements

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.8.19 Basic data for movements

speeddata The speed

zonedata The accuracy of the position (stop point or fly-by point)

tooldata The tool coordinate system and the load of the tool

wobjdata The work object coordinate system

stoppointdata The termination of the position

identno A number used to control synchronizing of two or more coordinated syn-
chronized movement with each other

Data type Used to define:

pos A position (x, y, z)

orient An orientation

pose A coordinate system (position + orientation)

confdata The configuration of the robot axes

extjoint The position of the external axes

robjoint The position of the robot axes

loaddata A load

mecunit An external mechanical unit

Data type Used to define:
753HAC16580-1 Revision: G

2 Basic RAPID programming
2.8.19 Basic data for movements

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3HAC16580-1 Revision: G76

2 Basic RAPID programming
2.9 Input and output signals

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.9 Input and output signals

The robot can be equipped with a number of digital and analog user signals that can be
read and changed from within the program.

2.9.1 Programming principles

The signal names are defined in the system parameters. These names are always
available in the program for reading or setting I/O operations.

The value of an analog signal or a group of digital signals is specified as a numeric
value.

2.9.2 Changing the value of a signal

2.9.3 Reading the value of an input signal

The value of an input signal can be read directly in the program, e.g. :

! Digital input
IF di1 = 1 THEN ...

! Digital group input
IF gi1 = 5 THEN ...

! Analog input
IF ai1 > 5.2 THEN ...

Following recoverable error can be generated. The error can be handled in an error
handler. The system variable ERRNO will be set to:

ERR_NORUNUNIT No contact with the unit

Instruction Used to:

InvertDO Invert the value of a digital output signal

PulseDO Generate a pulse on a digital output signal

Reset Reset a digital output signal (to 0)

Set Set a digital output signal (to 1)

SetAO Change the value of an analog output signal

SetDO Change the value of a digital output signal (symbolic value; e.g. high/low)

SetGO Change the value of a group of digital output signals
773HAC16580-1 Revision: G

2 Basic RAPID programming
2.9.4 Reading the value of an output signal

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.9.4 Reading the value of an output signal

2.9.5 Testing input or output signals

2.9.6 Disabling and enabling I/O modules

I/O modules are automatically enabled at start-up, but they can be disabled during
program execution and re-enabled later.

Function Used to:

AOutput Read the current value of an analog output signal

DOutput Read the current value of a digital output signal

GOutput Read the current value of a group of digital output signals

Instruction Used to:

WaitDI Wait until a digital input is set or reset

WaitDO Wait until a digital output is set on reset

WaitGI Wait until a group of digital input signals is set to a value

WaitGO Wait until a group of digital output signals is set to a value

WaitAI Wait until a analog input is less or greather then a value

WaitAO Wait until a analog output is less or greather then a value

Function Used to:

TestDI Test whether a digital input is set

ValidIO Valid I/O signal to access

Instruction Used to:

IODisable Disable an I/O module

IOEnable Enable an I/O module
3HAC16580-1 Revision: G78

2 Basic RAPID programming
2.9.7 Defining input and output signals

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.9.7 Defining input and output signals

2.9.8 Get status of I/O bus and unit

2.9.9 Start of I/O bus

Data type Used to define:

dionum The symbolic value of a digital signal

signalai The name of an analog input signal *

signalao The name of an analog output signal *

signaldi The name of a digital input signal *

signaldo The name of a digital output signal *

signalgi The name of a group of digital input signals *

signalgo The name of a group of digital output signals *

Instruction Used to:

AliasIO Define a signal with an alias name

Data type Used to define:

iounit_state The status of the I/O unit

bustate The status of the I/O bus

Function Used to:

IOUnitState Returns current status of the I/O unit.

Instruction Used to:

IOBusState Get current status of the I/O bus.

Instruction Used to:

IOBusStart Start an I/O bus.
793HAC16580-1 Revision: G

2 Basic RAPID programming
2.9.9 Start of I/O bus

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3HAC16580-1 Revision: G80

2 Basic RAPID programming
2.10 Communication

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.10 Communication

There are four possible ways to communicate via serial channels:

- Messages can be output to the FlexPendant display and the user can answer
questions, such as about the number of parts to be processed.

- Character-based information can be written to or read from text files in mass
memory. In this way, for example, production statistics can be stored and
processed later in a PC. Information can also be printed directly on a printer
connected to the robot.

- Binary information can be transferred between the robot and a sensor, for
example.

- Binary information can be transferred between the robot and another computer,
for example, with a link protocol.

2.10.1 Programming principles

The decision whether to use character-based or binary information depends on how the
equipment with which the robot communicates handles that information. A file, for
example, can have data that is stored in character-based or binary form.

If communication is required in both directions simultaneously, binary transmission is
necessary.

Each serial channel or file used must first be opened. On doing this, the channel/file
receives a descriptor that is then used as a reference when reading/writing. The
FlexPendant can be used at all times and does not need to be opened.

Both text and the value of certain types of data can be printed.
813HAC16580-1 Revision: G

2 Basic RAPID programming
2.10.2 Communicating using the FlexPendant, function group TP

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.10.2 Communicating using the FlexPendant, function group TP

2.10.3 Communicating using the FlexPendant, function group UI

Instruction Used to:

TPErase Clear the FlexPendant operator display

TPWrite Write text on the FlexPendant operator display

ErrWrite Write text on the FlexPendant display and simultaneously store that
message in the progam’s error log.

TPReadFK Label the function keys and to read which key is pressed

TPReadNum Read a numeric value from the FlexPendant

TPShow Choose a window on the FlexPendant from RAPID

Data type Used to:

tpnum Represent FlexPendant window with a symbolic constant

Instruction Used to:

UIMsgBox Write message to FlexPendant
Read pressed button from FlexPendant
Type basic

UIShow Open an application on the FlexPendant from RAPID

Function Used to:

UIMessageBox Write message to FlexPendant
Read pressed button from FlexPendant
Type advanced

UINumEntry Read a numeric value from the FlexPendant

UINumTune Tune a numeric value from the FlexPendant

UIAlphaEntry Read text from the FlexPendant

UIListView Select item in a list from the FlexPendant

UIClientExist Is the FlexPendant connected to the system

Data type Used to:

icondata Represent icon with a symbolic constant

buttondata Represent button with a symbolic constant

listitem Define menu list items

btnres Represent selected button with a symbolic constant

uishownum Instance Id for UIShow
3HAC16580-1 Revision: G82

2 Basic RAPID programming
2.10.4 Reading from or writing to a character-based serial channel/file

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.10.4 Reading from or writing to a character-based serial channel/file

2.10.5 Communicating using binary serial channels/files/field buses

Instruction Used to:

Open Open a channel/file for reading or writing

Write Write text to the channel/file

Close Close the channel/file

Function Used to:

ReadNum Read a numeric value

ReadStr Read a text string

Instruction Used to:

Open Open a serial channel/file for binary transfer of data

WriteBin Write to a binary serial channel/file

WriteAnyBin Write to any binary serial channel/file

WriteStrBin Write a string to a binary serial channel/file

Rewind Set the file position to the beginning of the file

Close Close the channel/file

ClearIOBuff Clear input buffer of a serial channel

ReadAnyBin Read from any binary serial channel

WriteRawBytes Write data of type rawbytes to a binary serial channel/file/field bus

ReadRawBytes Read data of type rawbytes from a binary serial channel/file/field bus

Function Used to:

ReadBin Read from a binary serial channel

ReadStrBin Read a string from a binary serial channel/file
833HAC16580-1 Revision: G

2 Basic RAPID programming
2.10.6 Communication using rawbytes

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.10.6 Communication using rawbytes

The instructions and functions below are used to support the communication
instructions WriteRawBytes and ReadRawBytes.

2.10.7 Data for serial channels/files/field buses

Instruction Used to:

ClearRawBytes Set a rawbytes variable to zero

CopyRawBytes Copy from one rawbytes variable to another

PackRawBytes Pack the contents of a variable into a “container” of type rawbytes

UnPackRawBytes Unpack the contents of a “container” of type rawbytes to a variable

PackDNHeader Pack the header of a DeviceNet message into a “container” of rawbytes

Function Used to:

RawBytesLen Get the current length of valid bytes in a rawbyte variable

Data type Used to define:

iodev A reference to a serial channel/file, which can then be used for reading
and writing

rawbytes A general data “container”, used for communication with I/O devices
3HAC16580-1 Revision: G84

2 Basic RAPID programming
2.10.8 Communicating using sockets

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.10.8 Communicating using sockets

2.10.9 Communication using RAPID Message Queues

Instruction Used to:

SocketCreate Create a new socket

SocketConnect Connect to remote computer (only client applications)

SocketSend Send data to remote computer

SocketReceive Receive data from remote computer

SocketClose Close the socket

SocketBind Bind a socket to a port (only server applications)

SocketListen Listen for connections (only server applications)

SocketAccept Accept connections (only server applications)

Function Used to:

SocketGetStatus Get current socket state

Data type Used to define:

socketdev Socket device

socketstatus Socket status

Data type Used to define:

rmqheadera The rmqheader is a part of the datatype rmqmessage and is used to
describe the message

rmqmessagea A general data container, used when communicate with RAPID Message
Queue functionality

rmqslota Identity number of a RAPID task or Robot Application Builder client

Instruction Used to:

IRMQMessagea Order and enable interrupts for a specific data type

RMQFindSlota Find the identity number of the queue configured for a RAPID task or Robot
Application Builder client

RMQGetMessagea Get the first message from the queue of this task

RMQGetMsgDataa Extract the data from a message

RMQGetMsgHeadera Extract header information from a message

RMQSendMessagea Send data to the queue of the queue configured for a RAPID task or Robot
Application Builder client

RMQSendWaita Send a message and wait for the answer
853HAC16580-1 Revision: G

2 Basic RAPID programming
2.10.9 Communication using RAPID Message Queues

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Function Used to:

RMQGetSlotNamea Get the name of a RAPID Message Queue client from a given identity
number, i.e. from a given rmqslot

a. Only if the robot is equipped with at least one of the options “FlexPendant Interface, PC In-
terface, or Multitasking”
3HAC16580-1 Revision: G86

2 Basic RAPID programming
2.11 Interrupts

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.11 Interrupts

Interrupts are program-defined events, identified by interrupt numbers. An interrupt
occurs when an interrupt condition is true. Unlike errors, the occurrence of an interrupt
is not directly related to (synchronous with) a specific code position. The occurrence
of an interrupt causes suspension of the normal program execution and control is
passed to a trap routine.

Even though the robot immediately recognizes the occurrence of an interrupt (only
delayed by the speed of the hardware), its response – calling the corresponding trap
routine – can only take place at specific program positions, namely:

- when the next instruction is entered,
- any time during the execution of a waiting instruction, e.g. WaitUntil,
- any time during the execution of a movement instruction, e.g. MoveL.

This normally results in a delay of 2-30 ms between interrupt recognition and response,
depending on what type of movement is being performed at the time of the interrupt.

The raising of interrupts may be disabled and enabled. If interrupts are disabled, any
interrupt that occurs is queued and not raised until interrupts are enabled again. Note
that the interrupt queue may contain more than one waiting interrupt. Queued
interrupts are raised in FIFO order. Interrupts are always disabled during the execution
of a trap routine.

When running stepwise and when the program has been stopped, no interrupts will be
handled. Interrupts in queue at stop will be thrown away and any interrupts generated
under stop will not be dealt, except for safe interrupts, see

The maximum number of defined interrupts at any one time is limited to 100 per
program task.

2.11.1 Programming principles

Each interrupt is assigned an interrupt identity. It obtains its identity by creating a
variable (of data type intnum) and connecting this to a trap routine.

The interrupt identity (variable) is then used to order an interrupt, i.e. to specify the
reason for the interrupt. This may be one of the following events:

- An input or output is set to one or to zero.
- A given amount of time elapses after an interrupt is ordered.
- A specific position is reached.
873HAC16580-1 Revision: G

2 Basic RAPID programming
2.11.1 Programming principles

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
When an interrupt is ordered, it is also automatically enabled, but can be temporarily
disabled. This can take place in two ways:

- All interrupts can be disabled. Any interrupts occurring during this time are
placed in a queue and then automatically generated when interrupts are enabled
again.

- Individual interrupts can be deactivated. Any interrupts occurring during this
time are disregarded.
3HAC16580-1 Revision: G88

2 Basic RAPID programming
2.11.2 Connecting interrupts to trap routines

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.11.2 Connecting interrupts to trap routines

2.11.3 Ordering interrupts

2.11.4 Cancelling interrupts

2.11.5 Enabling/disabling interrupts

Instruction Used to:

CONNECT Connect a variable (interrupt identity) to a trap routine

Instruction Used to order:

ISignalDI An interrupt from a digital input signal

ISignalDO An interrupt from a digital output signal

ISignalGI An interrupt from a group of digital input signals

ISignalGO An interrupt from a group of digital output signals

ISignalAI An interrupt from an analog input signal

ISignalAO An interrupt from an analog output signal

ITimer A timed interrupt

TriggInt A position-fixed interrupt (from the Motion pick list)

IPers An interrupt when changing a persistent.

IError Order and enable an interrupt when an error occurs

IRMQMessagea

a. Only if the robot is equipped with the option “FlexPendant Interface”, “PC Interface”, or
“Multitasking”.

An interrupt when a specified data type is received by a RAPID Message
Queue.

Instruction Used to:

IDelete Cancel (delete) an interrupt

Instruction Used to:

ISleep Deactivate an individual interrupt

IWatch Activate an individual interrupt

IDisable Disable all interrupts

IEnable Enable all interrupts
893HAC16580-1 Revision: G

2 Basic RAPID programming
2.11.6 Interrupt data

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.11.6 Interrupt data

2.11.7 Data type of interrupts

Instruction Is Used:

GetTrapData in a trap routine to obtain all information about the interrupt that caused the
trap routine to be executed.

ReadErrData in a trap routine, to obtain numeric information (domain, type and number)
about an error, a state change, or a warning, that caused the trap routine
to be executed.

Data type Used to:

intnum Define the identity of an interrupt.

trapdata Contain the interrupt data that caused the current TRAP routine to be
executed.

errtype Specify an error type (gravity)

errdomain Order and enable an interrupt when an error occur.

errdomain Specify an error domain.
3HAC16580-1 Revision: G90

2 Basic RAPID programming
2.11.8 Safe Interrupt

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.11.8 Safe Interrupt

Some instuctions, e.g. ITimer and ISignalDI, can be used together with Safe Interrupt.
Safe Interrupts are interrupts that will be queued if they arrive during stop or stepwise
execution.The queued interrupts will be dealt with as soon as continous execution is
started, they will be handled in FIFO order. Interrupts in queue at stop will also be dealt
with. The instruction ISleep can not be used together with safe interrupts.

2.11.9 Interrupt manipulation

Defining an interrupt makes it known to the robot. The definition specifies the interrupt
condition and activates and enables the interrupt.

Example: VAR intnum sig1int;
.

ISignalDI di1, high, sig1int;

An activated interrupt may in turn be deactivated (and vice versa).
During the deactivation time, any generated interrupts of the specified type are thrown
away without any trap execution.

Example: ISleep sig1int; deactivate
.

IWatch sig1int; activate

An enabled interrupt may in turn be disabled (and vice versa).
During the disable time, any generated interrupts of the specified type are queued and
raised first when the interrupts are enabled again.

Example: IDisable sig1int; disable
.

IEnable sig1int; enable

Deleting an interrupt removes its definition. It is not necessary to explicitly remove an
interrupt definition, but a new interrupt cannot be defined to an interrupt variable until
the previous definition has been deleted.

Example: IDelete sig1int;

2.11.10 Trap routines

Trap routines provide a means of dealing with interrupts. A trap routine can be
connected to a particular interrupt using the CONNECT instruction. When an interrupt
occurs, control is immediately transferred to the associated trap routine (if any). If an
interrupt occurs, that does not have any connected trap routine, this is treated as a fatal
error, i.e. causes immediate termination of program execution.
913HAC16580-1 Revision: G

2 Basic RAPID programming
2.11.10 Trap routines

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Example: VAR intnum empty;
VAR intnum full;

.PROC main()

CONNECT empty WITH etrap;connect trap routines
CONNECT full WITH ftrap;
ISignalDI di1, high, empty;define feeder interrupts
ISignalDI di3, high, full;
.
IDelete empty;
IDelete full;

ENDPROC

TRAP etrap responds to “feeder
open_valve; empty” interrupt
RETURN;

ENDTRAP

TRAP ftrap responds to “feeder full”
close_valve; interrupt
RETURN;

ENDTRAP

Several interrupts may be connected to the same trap routine. The system variable
INTNO contains the interrupt number and can be used by a trap routine to identify an
interrupt. After the necessary action has been taken, a trap routine can be terminated
using the RETURN instruction or when the end (ENDTRAP or ERROR) of the trap
routine is reached. Execution continues from the place where the interrupt occurred.
3HAC16580-1 Revision: G92

2 Basic RAPID programming
2.12 Error recovery

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.12 Error recovery

Many of the errors that occur when a program is being executed can be handled in the
program, which means that program execution does not have to be interrupted. These
errors are either of a type detected by the system, such as division by zero, or of a type
that is raised by the program, such as a program raising an error when an incorrect
value is read by a bar code reader.

An execution error is an abnormal situation, related to the execution of a specific piece
of a program. An error makes further execution impossible (or at least hazardous).
“Overflow” and “division by zero” are examples of errors. Errors are identified by their
unique error number and are always recognized by the system. The occurrence of an
error causes suspension of the normal program execution and the control is passed to
an error handler. The concept of error handlers makes it possible to respond to and,
possibly, recover from errors that arise during program execution. If further execution
is not possible, the error handler can at least assure that the program is given a graceful
abortion.

2.12.1 Programming principles

When an error occurs, the error handler of the routine is called (if there is one). It is
also possible to create an error from within the program and then jump to the error
handler.

In an error handler, errors can be handled using ordinary instructions. The system data
ERRNO can be used to determine the type of error that has occurred. A return from the
error handler can then take place in various ways (RETURN, RETRY, TRYNEXT, and
RAISE).

If the current routine does not have an error handler, the internal error handler of the
robot takes over directly. The internal error handler gives an error message and stops
program execution with the program pointer at the faulty instruction.
933HAC16580-1 Revision: G

2 Basic RAPID programming
2.12.2 Creating an error situation from within the program

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.12.2 Creating an error situation from within the program

2.12.3 Booking an error number

Instruction Used to:
RAISE “Create” an error and call the error handler

Instruction Used to:
BookErrNo Book a new RAPID system error number.
3HAC16580-1 Revision: G94

2 Basic RAPID programming
2.12.4 Restarting/returning from the error handler

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.12.4 Restarting/returning from the error handler

2.12.5 User defined errors and warnings

2.12.6 IGenerate process error

Instruction Used to:

EXIT Stop program execution in the event of a fatal error

RAISE Call the error handler of the routine that called the current routine

RETRY Re-execute the instruction that caused the error

TRYNEXT Execute the instruction following the instruction that caused the error

RETURN Return to the routine that called the current routine

RaiseToUser From a NOSTEPIN routine, the error is raised to the error handler at user
level.

StartMoveRetry An instruction that replaces the two instructions StartMove and RETRY. It
both resumes movements and re-execute the instruction that caused the
error.

SkipWarn Skip the latest requested warning message.

ResetRetryCount Reset the number of counted retries.

Function Used to:

RemainingRetries Remaining retries left to do.

Instruction Used to:

ErrLog Display an error message on the teach pendant and write it in the robot
message log.

ErrRaise Create an error in the program and then call the error handler of the
routine.

Instruction Used to:

ProcerrRecovery Generate process error during robot movement.
953HAC16580-1 Revision: G

2 Basic RAPID programming
2.12.7 Data for error handling

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.12.7 Data for error handling

2.12.8 Configuration for error handling

Data type Used to define:

errnum The reason for the error

errstr Text in an error message

System parameter Used to define:

No Of Retry The number of times a failing instruction will be retried if the error handler
use RETRY. No Of Retry belongs to the type System Misc in the topic
Controller.
3HAC16580-1 Revision: G96

2 Basic RAPID programming
2.12.9 Error handlers

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.12.9 Error handlers

Any routine may include an error handler. The error handler is really a part of the
routine, and the scope of any routine data also comprises the error handler of the
routine. If an error occurs during the execution of the routine, control is transferred to
its error handler.

Example: FUNC num safediv(num x, num y)
RETURN x / y;

ERROR
IF ERRNO = ERR_DIVZERO THEN

TPWrite "The number cannot be equal to 0";
RETURN x;

ENDIF
ENDFUNC

The system variable ERRNO contains the error number of the (most recent) error and
can be used by the error handler to identify that error. After any necessary actions have
been taken, the error handler can:

- Resume execution, starting with the instruction in which the error occurred.
This is done using the RETRY instruction. If this instruction causes the same
error again, up to four error recoveries will take place; after that execution will
stop. To be able to make more than four retries, you have to configure the
system parameter No Of Retry, see Technical reference manual - System
parameters.

- Resume execution, starting with the instruction following the instruction in
which the error occurred. This is done using the TRYNEXT instruction.

- Return control to the caller of the routine using the RETURN instruction. If the
routine is a function, the RETURN instruction must specify an appropriate
return value.

- Propagate the error to the caller of the routine using the RAISE instruction.

2.12.10 System error handler

When an error occurs in a routine that does not contain an error handler or when the
end of the error handler is reached (ENDFUNC, ENDPROC or ENDTRAP), the
system error handler is called. The system error handler just reports the error and stops
the execution.

In a chain of routine calls, each routine may have its own error handler. If an error
occurs in a routine with an error handler, and the error is explicitly propagated using
the RAISE instruction, the same error is raised again at the point of the call of the
routine - the error is propagated. When the top of the call chain (the entry routine of
the task) is reached without any error handler being found or when the end of any error
handler is reached within the call chain, the system error handler is called. The system
973HAC16580-1 Revision: G

2 Basic RAPID programming
2.12.11 Errors raised by the program

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
error handler just reports the error and stops the execution. Since a trap routine can only
be called by the system (as a response to an interrupt), any propagation of an error from
a trap routine is made to the system error handler.

Error recovery is not available for instructions in the backward handler. Such errors are
always propagated to the system error handler.

It is not possible to recover from or respond to errors that occur within an error handler.
Such errors are always propagated to the system error handler.

2.12.11 Errors raised by the program

In addition to errors detected and raised by the robot, a program can explicitly raise
errors using the RAISE instruction. This facility can be used to recover from complex
situations. It can, for example, be used to escape from deeply-nested code positions.
Error numbers 1-90 may be used in the raise instruction. Explicitly-raised errors are
treated exactly like errors raised by the system.

2.12.12 The event log

Errors that are handled by an error handler still result in a warning in the event log. By
looking in the event log it is possible to track what errors that have occurred.

If you want an error to be handled without writing a warning in the event log, use the
instruction SkipWarn in the error handler. This can be useful when using the error
handler to test something (e.g. if a file exists) without leaving any trails if the test fails.
3HAC16580-1 Revision: G98

2 Basic RAPID programming
2.12.13 UNDO

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.12.13 UNDO

Rapid routines may contain an UNDO-handler. The handler is executed automatically
if the PP is moved out of the routine. This is supposed to be used for cleaning up
remaining side-effects after partially executed routines, e.g canceling modal
instructions (such as opening a file). Most parts of the Rapid language can be used in
an UNDO-handler, but there are some limitations, e.g. motion instructions.

2.12.13.1 Definitions/terminology

In order to avoid ambiguousness in the following text, next follows a list of
explanations to terms related to UNDO.

UNDO: The execution of clean-up code prior to a program reset.

UNDO-handler: An optional part of a Rapid procedure or function containing Rapid
code that is executed on an UNDO.

UNDO-routine: A procedure or a function with an UNDO-handler.

Call-chain: All procedures or functions currently associated to each other through not-
yet finished routine invocations. Assumed to start in the Main routine if nothing else is
specified.

UNDO context: When the current routine is part of a call-chain starting in an UNDO-
handler.

2.12.13.2 When to use UNDO

A Rapid routine can be aborted at any point by moving the program pointer out of the
routine. In some cases, when the program is executing certain sensitive routines, it is
unsuitable to abort. Using UNDO it is possible to protect such sensitive routines
against an unexpected program reset. With UNDO it is possible to have certain code
executed automatically if the routine is aborted. This code should typically perform
clean-up actions, for instance closing a file.

2.12.13.3 UNDO behavior in detail

When UNDO is activated, all UNDO-handlers in the current call-chain are executed.
These handlers are optional parts of a Rapid procedure or function, containing Rapid
code. The currently active UNDO-handlers are those who belong to procedures or
functions that has been invoked but not yet terminated, i.e. the routines in the current
call-chain.

UNDO is activated when the PP is unexpectedly moved out of an UNDO-routine, for
instance if the user moves PP to Main. UNDO is also started if an EXIT instruction is
executed, causing the program to be reset, or if the program is reset for some other
993HAC16580-1 Revision: G

2 Basic RAPID programming
2.12.13 UNDO

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
reason, for instance when changing some configuration or if the program or module is
deleted. However, UNDO is not started if the program reaches the end of the routine
or a return-statement and returns as usual from the routine.

If there is more than one UNDO-routine in the call-chain, the UNDO-handlers of the
routines will be processed in the same order the routines would have returned, bottom-
up. The UNDO-handler closest to the end of the call-chain will execute first and the
one closest to Main will execute last.

2.12.13.4 Limitations

An UNDO-handler can access any variable or symbol reachable from the normal
routine body, including locally declared variables. Rapid-code that are to be executed
in UNDO-context has however limitations.

An UNDO-handler must not contain STOP, BREAK, RAISE or RETURN. If an
attempt is made to use any of these instructions in UNDO context, the instruction will
be ignored and an ELOG warning is generated.

Motion-instructions, i.e. MoveL, are not allowed in UNDO context either.

The execution is always continuous in UNDO, it is not possible to step. When UNDO
starts, the execution mode is set to continuous automatically. After the UNDO session
is finished, the old execution mode is restored.

If the program is stopped while executing an UNDO-handler, the rest of the handler
will not be executed. If there are additional UNDO-handlers in the call-chain that have
not yet been executed, they will be ignored as well. This will result in an ELOG
warning. This also includes stopping due to a runtime error.

The PP is not visible in an UNDO-handler. When UNDO executes, the PP remains at
its old location, but is updated when the UNDO-handler(s) are finished.

An EXIT instruction aborts UNDO in similar way as a Run-time error or a Stop. The
rest of the UNDO-handlers are ignored and the PP is moved to Main.
3HAC16580-1 Revision: G100

2 Basic RAPID programming
2.12.13 UNDO

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.12.13.5 Example

The Program:
PROC B

TPWrite "In Routine B";
Exit;

UNDO
TPWrite "In UNDO of routine B";

ENDPROC

PROC A
TPWrite "In Routine A";
B;

ENDPROC

PROC main
TPWrite "In main";
A;

UNDO
TPWrite "In UNDO of main";

ENDPROC

The output:
In main
In Routine A
In Routine B
In UNDO of routine B
In UNDO of main
1013HAC16580-1 Revision: G

2 Basic RAPID programming
2.12.13 UNDO

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3HAC16580-1 Revision: G102

2 Basic RAPID programming
2.13 System & time

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.13 System & time

System and time instructions allow the user to measure, inspect and record time.

2.13.1 Programming principles

Clock instructions allow the user to use clocks that function as stopwatches. In this way
the robot program can be used to time any desired event.

The current time or date can be retrieved in a string. This string can then be displayed
to the operator on the FlexPendant display or used to time and date-stamp log files.

It is also possible to retrieve components of the current system time as a numeric value.
This allows the robot program to perform an action at a certain time or on a certain day
of the week.

2.13.2 Using a clock to time an event

2.13.3 Reading current time and date

Instruction Used to:

ClkReset Reset a clock used for timing

ClkStart Start a clock used for timing

ClkStop Stop a clock used for timing

Function Used to:

ClkRead Read a clock used for timing

Data Type Used for:

clock Timing – stores a time measurement in seconds

Function Used to:

CDate Read the Current Date as a string

CTime Read the Current Time as a string

GetTime Read the Current Time as a numeric value
1033HAC16580-1 Revision: G

2 Basic RAPID programming
2.13.4 Retrieve time information from file

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.13.4 Retrieve time information from file

2.13.5 Get the size of free program memory

Function Used to:

FileTime Retrieve the last time for modification of a file.

ModTime Retrieve file modify time for the loaded module.

ModExist Check if program module exist.

Function Used to:

ProgMemFree Retrieve the size of free program memory.
3HAC16580-1 Revision: G104

2 Basic RAPID programming
2.14 Mathematics

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.14 Mathematics

Mathematical instructions and functions are used to calculate and change the value of
data.

2.14.1 Programming principles

Calculations are normally performed using the assignment instruction, e.g.
reg1:= reg2 + reg3 / 5. There are also some instructions used for simple calculations,
such as to clear a numeric variable.

2.14.2 Simple calculations on numeric data

2.14.3 More advanced calculations

Instruction Used to:

Clear Clear the value

Add Add or subtract a value

Incr Increment by 1

Decr Decrement by 1

Instruction Used to:

:= Perform calculations on any type of data
1053HAC16580-1 Revision: G

2 Basic RAPID programming
2.14.4 Arithmetic functions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.14.4 Arithmetic functions

2.14.5 String digit functions

Function Used to:

Abs Calculate the absolute value

Round Round a numeric value

Trunc Truncate a numeric value

Sqrt Calculate the square root

Exp Calculate the exponential value with the base “e”

Pow Calculate the exponential value with an arbitrary base

ACos Calculate the arc cosine value

ASin Calculate the arc sine value

ATan Calculate the arc tangent value in the range [-90,90]

ATan2 Calculate the arc tangent value in the range [-180,180]

Cos Calculate the cosine value

Sin Calculate the sine value

Tan Calculate the tangent value

EulerZYX Calculate Euler angles from an orientation

OrientZYX Calculate the orientation from Euler angles

PoseInv Invert a pose

PoseMult Multiply a pose

PoseVect Multiply a pose and a vector

Vectmagn Calculate the magnitude of a pos vector.

DotProd Calculate the dot (or scalar) product of two pos vectors.

NOrient Normalise unnormalised orientation (quarternion)

Function Used to:

StrDigCmp Numeric compare of two strings with only digits

StrDigCalc Arithmetic operations on two strings with only digits

Data type Used to:

stringdig String with only digits
3HAC16580-1 Revision: G106

2 Basic RAPID programming
2.14.6 Bit functions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.14.6 Bit functions

Instruction Used to:

BitClear Clear a specified bit in a defined byte data.

BitSet Set a specified bit to 1 in a defined byte data.

Function Used to:

BitCheck Check if a specified bit in a defined byte data is set to 1.

BitAnd Execute a logical bitwise AND operation on data types byte.

BitNeg Execute a logical bitwise NEGATION operation on data types byte.

BitOr Execute a logical bitwise OR operation on data types byte.

BitXOr Execute a logical bitwise XOR operation on data types byte.

BitLSh Execute a logical bitwise LEFT SHIFT operation on data types byte.

BitRSh Execute a logical bitwise RIGHT SHIFT operation on data types byte.

Data type Used to:

byte Used together with instructions and functions that handle bit manipulation.
1073HAC16580-1 Revision: G

2 Basic RAPID programming
2.14.6 Bit functions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3HAC16580-1 Revision: G108

2 Basic RAPID programming
2.15 External computer communication

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.15 External computer communication

The robot can be controlled from a superordinate computer. In this case, a special
communications protocol is used to transfer information.

2.15.1 Programming principles

As a common communications protocol is used to transfer information from the robot
to the computer and vice versa, the robot and computer can understand each other and
no programming is required. The computer can, for example, change values in the
program’s data without any programming having to be carried out (except for defining
this data). Programming is only necessary when program-controlled information has
to be sent from the robot to the superordinate computer.

2.15.2 Sending a program-controlled message from the robot to a computer

Instruction Used to:
SCWritea

a. Only if the robot is equipped with the option “PC interface/backup”.

Send a message to the superordinate computer
1093HAC16580-1 Revision: G

2 Basic RAPID programming
2.15.2 Sending a program-controlled message from the robot to a computer

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3HAC16580-1 Revision: G110

2 Basic RAPID programming
2.16 File operation functions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.16 File operation functions

Instruction Used to:

MakeDir Create a new directory.

RemoveDir Remove a directory.

OpenDir Open a directory for further investigation.

CloseDir Close a directory in balance with OpenDir.

RemoveFile Remove a file.

RenameFile Rename a file.

CopyFile Copy a file.

Function Used to:

ISFile Check the type of a file.

FSSize Retrive the size of a file system.

FileSize Retrive the size of a specified file.

ReadDir Read next entry in a directory.

Data Type Used to:

dir Traverse directory structures.
1113HAC16580-1 Revision: G

2 Basic RAPID programming
2.16 File operation functions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3HAC16580-1 Revision: G112

2 Basic RAPID programming
2.17 RAPID support instructions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.17 RAPID support instructions

Various functions for supporting of the RAPID language:

- Get system data
- Read configuration data
- Write configuration data
- Restart the controller
- Test system data
- Get object name
- Get task name
- Search for symbols
- Get current event type, execution handler or execution level

2.17.1 Get system data

Instruction to fetch the value and (optional) the symbol name for the current system
data of specified type.

2.17.2 Get information about the system

Function to get information about Serial Number, SoftWare Version , Robot Type,
LAN ip address or Controller Language.

Instruction Used to:

GetSysData Fetch data and name of current active Tool or Work Object.

ResetPPMoved Reset state for the program pointer moved in manual mode.

SetSysData Activate a specified system data name for a specified data type.

Function Used to:

IsSysID Test the system identity.

IsStopStateEvent Get information about the movement of the Program Pointer.

PPMovedInManMode Test whether the program pointer is moved in manual mode.

RobOS Check if the execution is performed on Robot Controller RC or Virtual
Controller VC.

Function Used to:

GetSysInfo Get information about the system.
1133HAC16580-1 Revision: G

2 Basic RAPID programming
2.17.3 Get information about memory

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.17.3 Get information about memory

2.17.4 Read configuration data

Instruction to to read one attribute of a named system parameter.

2.17.5 Write configuration data

Instruction to write one attribute of a named system parameter.

2.17.6 Restart the controller

2.17.7 Text tables instructions

Instructions to administrate text tables in the system.

Function Used to:

ProgMemFree Get the size of free program memory

Instruction Used to:

ReadCfgData Read one attribute of a named system parameter.

Instruction Used to:

WriteCfgData Write one attribute of a named system parameter.

Instruction Used to:

WarmStart Restart the controller e.g. when you have changed system parameters
from RAPID.

Instruction Used to:

TextTabInstall Install a text table in the system.

Function Used to:

TextTabGet Get the text table number of a user defined text table.

TextGet Get a text string from the system text tables.
3HAC16580-1 Revision: G114

2 Basic RAPID programming
2.17.8 Get object name

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.17.8 Get object name

Instruction to get the name of an original data object for a current argument or current
data.

2.17.9 Get information about the tasks

TextTabFreeToUse Test whether the text table name (text resource string) is free to use or not.

Function Used to:

ArgName Return the original data object name.

Function Used to:

GetTaskName Get the identity of the current program task, with its name and number.

MotionPlannerNo Get the number of the current motion planner.

Function Used to:
1153HAC16580-1 Revision: G

2 Basic RAPID programming
2.17.10 Get current event type, execution handler or execution level

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.17.10 Get current event type, execution handler or execution level

2.17.11 Search for symbols

Instructions to search for data objects in the system.

Function Used to:

EventType Get current event routine type.

ExecHandler Get type of execution handler.

ExecLevel Get execution level.

Data Type Used to:

event_type Event routine type.

handler_type Type of execution handler.

exec_level Execution level.

Instruction Used to:

SetAllDataVal Set a new value to all data objects of a certain type that match a given
grammar.

SetDataSearch Together with GetNextSym data objects can be retrieved from the system.

GetDataVal Get a value from a data object that is specified with a string variable.

SetDataVal Set a value for a data object that is specified with a string variable.

Function Used to:

GetNextSym Together with SetDataSearch data objects can be retrieved from the
system.

Data type Used to:

datapos Holds information of where a certain object is defined in the system.
3HAC16580-1 Revision: G116

2 Basic RAPID programming
2.18 Calib & service instructions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.18 Calib & service instructions

A number of instructions are available to calibrate and test the robot system. See the
chapter on Troubleshooting Tools in the Product Manual for more information.

2.18.1 Calibration of the tool

2.18.2 Various calibration methods

2.18.3 Directing a value to the robot’s test signal

A reference signal, such as the speed of a motor, can be directed to an analog output
signal located on the backplane of the robot.

Instructions Used to:

MToolRotCalib Calibrate the rotation of a moving tool.

MToolTCPCalib Calibrate Tool Centre Point - TCP for a moving tool.

SToolRotCalib Calibrate the TCP and rotation of a stationary tool.

SToolTCPCalib Calibrate Tool Centre Point - TCP for a stationary tool

Functions Used to:

CalcRotAxisFrame Calculate the user coordinate system of a rotational axis type.

CalcRotAxFrameZ Calculate the user coordinate system of a rotational axis type when the
master robot and the external axis are located in different RAPID tasks.

DefAccFrame Define a frame from original positions and displaced positions.

Instructions Used to:

TestSignDefine Define a test signal

TestSignReset Reset all test signals definitions

Function Used to:

TestSignRead Read test signal value

Data type Used to:

testsignal For programming instruction TestSignDefine
1173HAC16580-1 Revision: G

2 Basic RAPID programming
2.18.4 Recording of an execution

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.18.4 Recording of an execution

The recorded data is stored in a file for later analysis, and is intended for debugging
RAPID programs, specifically for multi-tasking systems.

Instructions Used to:

SpyStart Start the recording of instruction and time data during execution.

SpyStop Stop the recording of time data during execution.
3HAC16580-1 Revision: G118

2 Basic RAPID programming
2.19 String functions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.19 String functions

String functions are used for operations with strings such as copying, concatenation,
comparison, searching, conversion, etc.

2.19.1 Basic operations

2.19.2 Comparison and searching

Data type Used to define:

string String. Predefined constants STR_DIGIT, STR_UPPER, STR_LOWER
and STR_WHITE

Instruction/Opera-
tor Used to:

:= Assign a value (copy of string)

+ String concatenation

Function Used to:

StrLen Find string length

StrPart Obtain part of a string

Operator Used to:
= Test if equal to

<> Test if not equal to

Function Used to:

StrMemb Check if character belongs to a set

StrFind Search for character in a string

StrMatch Search for pattern in a string

StrOrder Check if strings are in order
1193HAC16580-1 Revision: G

2 Basic RAPID programming
2.19.3 Conversion

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.19.3 Conversion

Function Used to:

NumToStr Convert a numeric value to a string

ValToStr Convert a value to a string

StrToVal Convert a string to a value

StrMap Map a string

StrToByte Convert a string to a byte

ByteToStr Convert a byte to string data

DecToHex Convert a number specified in a readable string in the base 10 to the base
16

HexToDec Convert a number specified in a readable string in the base 16 to the base
10
3HAC16580-1 Revision: G120

2 Basic RAPID programming
2.20 Multitasking

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.20 Multitasking

The events in a robot cell are often in parallel, so why are the programs not in parallel?

Multitasking RAPID is a way to execute programs in (pseudo) parallel. One parallel
program can be placed in the background or foreground of another program. It can also
be on the same level as another program.

To use this function the robot must be configured with one extra TASK for each
additional program. Each task can be of type NORMAL, STATIC or SEMISTATIC.

Up to 20 different tasks can be run in pseudo parallel. Each task consists of a set of
modules that are local in each task.

Variables, constants and persistents are local in each task, but global persistents are not.
A persistent is global by default, if not declared as LOCAL or TASK. A global
persistent with the same name and type is reachable in all tasks that it is declared in. If
two global persistents have the same name, but their type or size (array dimension)
differ, a runtime error will occur.

A task has its own trap handling and the event routines are triggered only on its own
task system states (e.g. Start/Stop/Restart....).

There are a few restrictions on the use of Multitasking RAPID.

- Do not mix up parallel programs with a PLC. The response time is the same as
the interrupt response time for one task. This is true, of course, when the task is
not in the background of another busy program

- When running a Wait instruction in manual mode, a simulation box will come
up after 3 seconds. This will only occur in a NORMAL task.

- Move instructions can only be executed in the motion task (the task bind to
program instance 0, see Technical reference manual - System parameters).

- The execution of a task will halt during the time that some other tasks are
accessing the file system, that is if the operator chooses to save or open a
program, or if the program in a task uses the load/erase/read/write instructions.

- The FlexPendant cannot access other tasks than a NORMAL task. So, the
development of RAPID programs for other SEMISTATIC or STATIC tasks
can only be done if the code is loaded into a NORMAL task, or off-line.

For all settings, see Technical reference manual - System parameters.
1213HAC16580-1 Revision: G

2 Basic RAPID programming
2.20.1 Basics

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.20.1 Basics

To use this function the robot must be configured with one extra TASK for each back-
ground program.

Up to 20 different tasks can be run in pseudo parallel. Each task consists of a set of
modules, in the same way as the normal program. All the modules are local in each
task.

Variables and constants are local in each task, but persistents are not. A persistent with
the same name and type is reachable in all tasks. If two persistents have the same name,
but their type or size (array dimension) differ, a runtime error will occur.

A task has its own trap handling and the event routines are triggered only on its own
task system states (e.g. Start/Stop/Restart....).

2.20.2 General instructions and functions

Instruction Used to

WaitSyncTaska

a. If the robot is equipped with the option “Multitasking”

Synchronize several program tasks at a special point in each program

Function Used to

TestAndSet Retrieve exclusive right to specific RAPID code areas or system resources
(type user poll)

WaitTestAndSet Retrieve exclusive right to specific RAPID code areas or system resources
(type interrupt control)

TaskRunMec Check if the program task controls any mechanical unit.

TaskRunRob Check if the program task controls any TCP-robot

GetMecUnitName Get the name of the mechanical unit

Datatypes Used to

taskid Identify available program tasks in the system.

syncidenta Specify the name of a synchronization point

tasks1 Specify several RAPID program tasks
3HAC16580-1 Revision: G122

2 Basic RAPID programming
2.20.3 MultiMove System with coordinated robots

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.20.3 MultiMove System with coordinated robots

Instruction Used to

SyncMoveOna

a. If the robot is equipped with the option “Multimove Coordinated”

Start a sequence of synchronized movements

SyncMoveOffa To end synchronized movements

SyncMoveUndo Reset synchronized movements

Function Used to

IsSyncMoveOn Tell if the current task is in synchronized mode

Datatypes Used to

syncidenta

a. If the robot is equipped with the option “Multitasking”

To specify the name of a synchronization point

tasksa Specify several RAPID program tasks

identno Identity for move instructions
1233HAC16580-1 Revision: G

2 Basic RAPID programming
2.20.3 MultiMove System with coordinated robots

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3HAC16580-1 Revision: G124

2 Basic RAPID programming
2.20.4 Synchronising the tasks

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.20.4 Synchronising the tasks

In many applications a parallel task only supervises some cell unit, quite independently
of the other tasks being executed. In such cases, no synchronisation mechanism is
necessary. But there are other applications which need to know what the main task is
doing, for example.

2.20.5 Synchronising using polling

This is the easiest way to do it, but the performance will be the slowest.

Persistents are then used together with the instructions WaitUntil, IF, WHILE or
GOTO.

If the instruction WaitUntil is used, it will poll internally every 100 ms. Do not poll
more frequently in other implementations.

Example

TASK 1

MODULE module1
PERS bool startsync:=FALSE;
PROC main()

 startsync:= TRUE;
.

ENDPROC
ENDMODULE

TASK 2

MODULE module2
PERS bool startsync:=FALSE;
PROC main()

WaitUntil startsync;
.

ENDPROC
ENDMODULE
1253HAC16580-1 Revision: G

2 Basic RAPID programming
2.20.6 Synchronising using an interrupt

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.20.6 Synchronising using an interrupt

The instruction SetDO and ISignalDO are used.

Example

TASK 1

MODULE module1
PROC main()

SetDO do1,1;
.

ENDPROC
ENDMODULE

TASK 2

MODULE module2
VAR intnum isiint1;
PROC main()

CONNECT isiint1 WITH isi_trap;
ISignalDO do1, 1, isiint1;

WHILE TRUE DO
WaitTime 200;

ENDWHILE

IDelete isiint1;

ENDPROC

TRAP isi_trap

.

ENDTRAP
ENDMODULE
3HAC16580-1 Revision: G126

2 Basic RAPID programming
2.20.7 Intertask communication

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.20.7 Intertask communication

All types of data can be sent between two (or more) tasks with global persistent
variables.

A global persistent variable is global in all tasks. The persistent variable must be of the
same type and size (array dimension) in all tasks that declared it. Otherwise a runtime
error will occur.

Example

TASK 1

MODULE module1
PERS bool startsync:=FALSE;
PERS string stringtosend:=””;
PROC main()

stringtosend:=”this is a test”;

 startsync:= TRUE

ENDPROC
ENDMODULE

TASK 2

MODULE module2
PERS bool startsync:=FALSE;
PERS string stringtosend:=””;
PROC main()

WaitUntil startsync;

!read string
IF stringtosend = “this is a test” THEN

ENDPROC
ENDMODULE
1273HAC16580-1 Revision: G

2 Basic RAPID programming
2.20.8 Type of task

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.20.8 Type of task

Each task can be of type NORMAL, STATIC or SEMISTATIC.

STATIC and SEMISTATIC tasks are started in the system startup sequence. If the
task is of type STATIC, it will be restarted at the current position (where PP was when
the system was powered off). If the type is set to SEMISTATIC, it will be started from
the beginning each time the power is turned on, and modules specified in the system
parameters will be reloaded if the module file is newer that the loaded module.

Tasks of type NORMAL will not be started at startup. They are started in the normal
way, e.g., from the FlexPendant.

2.20.9 Priorities

The way to run the tasks as default is to run all tasks at the same level in a round
robbin way (one basic step on each instance). But it is possible to change the priority
of one task by putting the task in the background of another. Then the background
will only execute when the foreground is waiting for some events, or has stopped the
execution (idle). A robot program with move instructions will be in an idle state most
of the time.

The example below describes some situations where the system has 10 tasks (see
Figure 5)

Round robbin chain 1: tasks 1, 2, and 9 are busy

Round robbin chain 2: tasks 1, 4, 5, 6 and 9 are busy
tasks 2 and 3 are idle

Round robbin chain 3: tasks 3, 5 and 6 are busy
tasks 1, 2, 9 and 10 are idle.

Round robbin chain 4: tasks 7 and 8 are busy
tasks 1, 2, 3, 4, 5, 6, 9 and 10 are idle
3HAC16580-1 Revision: G128

2 Basic RAPID programming
2.20.10 Trust Level

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Figure 5 The tasks can have different priorities.

2.20.10 Trust Level

TrustLevel handle the system behavior when a SEMISTATIC or STATIC task is
stopped for some reason or not executable.

SysFail - This is the default behaivour, all other NORMAL tasks will also stop, and
the system is set to state SYS_FAIL. All jogg and program start orders will be rejected.
Only a new warm start reset the system. This should be used when the task has some
security supervisions.

SysHalt - All NORMAL tasks will be stopped. The system is forced to “motors off”.
When taking up the system to “motors on” it is possible to jogg the robot, but a new
attempt to start the program will be rejected. A new warm start will reset the system.

task 4

task 8

task 7

task 10

task 6

task 3

task 5

task 9

task 2

task 1

chain 1 chain 2

chain 3
chain 4
1293HAC16580-1 Revision: G

2 Basic RAPID programming
2.20.11 Something to think about

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
SysStop - All NORMAL tasks will be stopped, but it is restartable. Jogging is also
possible.

NoSafety - Only the actual task itself will stop.

See Technical reference manual - System parameters - Controller/Task

2.20.11 Something to think about

When you specify task priorities, you must think about the following:

- Always use the interrupt mechanism or loops with delays in supervision tasks.
Otherwise the FlexPendant will never get any time to interact with the user.
And if the supervision task is in foreground, it will never allow another task in
background to execute.

2.20.12 Programming scheme

2.20.12.1 The first time

1. Define the new task under system parameters (Controller/Task)
Set the type to NORMAL and the TrustLevel to NoSafety.

2. Specify all modules that should be preloaded to this new task, also under
system parameters (Controller/Automatic loading of Modules).

3. Create the modules that should be in the new task from the FlexPendant (in
an existing NORMAL task) or off-line.

4. Test and debug the modules in the existing NORMAL task, until the
functionallity is satified. Note: this could only be done in motors on state.

5. If desired, change the task type to SEMISTATIC (or STATIC).

6. Restart the system.

2.20.12.2 Iteration phase

In many cases an iteration with point 3 and 5 is enough. It’s only when the program has
to be tested in the normal task and execution of the RAPID code in two task at the same
time could confuse the user, all point should be used. Note: if a STATIC task is used
it has to be forced to reload the new changed module and restarted from the beginning.
If all point below is used it will take care of that for you.
3HAC16580-1 Revision: G130

2 Basic RAPID programming
2.20.12 Programming scheme

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
1. Change the task type to NORMAL to inhibit the task. A NORMAL task will
not start when the system restart and if it’s not a NORMAL task not it will be
affected by the start/stop button at the FlexPendant.

2. Restart the system.

3. Load the moulde(s) to the NORMAL task, test, change and save the
module(s).Note: Don’t save the task as a program, save each module
according to the system parameters.

4. Change back the task type to SEMISTATIC (or STATIC).

5. Restart the system.

2.20.12.3 Finish phase

1. Set the TrustLevel to desired level eg SysFail

2. Restart the system
1313HAC16580-1 Revision: G

2 Basic RAPID programming
2.20.12 Programming scheme

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3HAC16580-1 Revision: G132

2 Basic RAPID programming
2.21 Backward execution

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.21 Backward execution

A program can be executed backwards one instruction at a time. The following general
restrictions are valid for backward execution:

- It is not possible to step backwards out of a IF, FOR, WHILE and TEST
statement.

- It is not possible to step backwards out of a routine when reaching the beginning
of the routine.

- Motion settings instructions, and some other instructions affecting the motion,
cannot be executed backwards. If attempting to execute such an instruction a
warning will be written in the event log.

2.21.1 Backward handlers

Procedures may contain a backward handler that defines the backward execution of a
procedure call. If calling a routine inside the backward handler, the routine is executed
forward.

The backward handler is really a part of the procedure and the scope of any routine data
also comprises the backward handler of the procedure.

Example: PROC MoveTo ()
MoveL p1,v500,z10,tool1;
MoveC p2,p3,v500,z10,tool1;
MoveL p4,v500,z10,tool1;

BACKWARD
MoveL p4,v500,z10,tool1;
MoveC p2,p3,v500,z10,tool1;
MoveL p1,v500,z10,tool1;

ENDPROC
When the procedure is called during forward execution, the following occurs:

PROC MoveTo ()
.. MoveL p1,v500,z10,tool1;
MoveTo; MoveC p2,p3,v500,z10,tool1;
.. MoveL p4,v500,z10,tool1;

BACKWARD
MoveL p4,v500,z10,tool1;
MoveC p2,p3,v500,z10,tool1;
MoveL p1,v500,z10,tool1;

ENDPROC
1333HAC16580-1 Revision: G

2 Basic RAPID programming
2.21.2 Limitation of move instructions in the backward handler

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
When the procedure is called during backwards execution, the following occurs:

PROC MoveTo ()

.. MoveL p1,v500,z10,tool1;
MoveTo; MoveC p2,p3,v500,z10,tool1;
.. MoveL p4,v500,z10,tool1;

BACKWARD
MoveL p4,v500,z10,tool1;
MoveC p2,p3,v500,z10,tool1;
MoveL p1,v500,z10,tool1;

ENDPROC
Instructions in the backward or error handler of a routine may not be executed
backwards. Backward execution cannot be nested, i.e. two instructions in a call chain
may not simultaneously be executed backwards.

A procedure with no backward handler cannot be executed backwards. A procedure
with an empty backward handler is executed as “no operation”.

2.21.2 Limitation of move instructions in the backward handler

The move instruction type and sequence in the backward handler must be a mirror of
the move instruction type and sequence for forward execution in the same routine:

Note that the order of CirPoint p2 and ToPoint p3 in the MoveC should be the same.

By move instructions is meant all instructions that result in some movement of the
robot or external axes such as MoveL, SearchC, TriggJ, ArcC, PaintL ...

Any departures from this programming limitation in the backward handler can
result in faulty backward movement. Linear movement can result in circular
movement and vice versa, for some part of the backward path.

PROC MoveTo ()
MoveL p1,v500,z10,tool1;
MoveC p2,p3,v500,z10,tool1;
MoveL p4,v500,z10,tool1;

BACKWARD
MoveL p4,v500,z10,tool1;
MoveC p2,p3,v500,z10,tool1;
MoveL p1,v500,z10,tool1;

ENDPROC

Mirror plane
3HAC16580-1 Revision: G134

2 Basic RAPID programming
2.21.3 Behavior of the backward execution

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.21.3 Behavior of the backward execution

2.21.3.1 MoveC and nostepin routines

When stepping forward through a MoveC instruction, the robot stops at the circular
point (the instruction is executed in two steps). However, when stepping backwards
though a MoveC instruction, the robot does not stop at the circular point (the
instruction is executed in one step).

It is not allowed to change from forward to backward execution when the robot is
executing a MoveC instruction.

It is not allowed to change from forward to backward execution, or vice versa, in a
nostepin routine.

2.21.3.2 Target, movement type and speed

When stepping forward though the program code, a program pointer indicates the next
instruction to execute and a motion pointer indicates the move instruction that the robot
is performing.

When stepping backward though the program code, the program pointer indicates the
instruction above the motion pointer. When the program pointer indicates one move
instruction and the motion pointer indicates another, the next backward movement will
move to the target indicated by the program pointer, using the movement type and
speed indicated by the motion pointer.

An exception, in terms of backward execution speed, is the instruction MoveExtJ. This
instruction use the speed related to the robtarget for both forward and backward
execution.
1353HAC16580-1 Revision: G

2 Basic RAPID programming
2.21.3 Behavior of the backward execution

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.21.3.3 Example

This example illustrates the behavior when stepping backwards through move
instructions. The program pointer and motion pointer helps you keep track of where
the RAPID execution is and where the robot is.

1 The program is stepped forward until the robot is in p5. The motion pointer will
indicate p5 and the program pointer will indicate the next move instruction
(MoveL p6).

2 The first press of the BWD button will not move the robot, but the program pointer
will move to the previous instruction (MoveC p3, p4). This indicates that this is the
instruction that will be executed the next time BWD is pressed.

3 The second press of the BWD button will move the robot to p4 linearly with the
speed v300. The target for this movement (p4) is taken from the MoveC instruc-
tion. The type of movement (linear) and the speed are taken from the instruction
below (MoveL p5).The motion pointer will indicate p4 and the program pointer
will move up to MoveL p2.

4 The third press of the BWD button will move the robot circularly, via p3, to p2
with the speed v100. The target p2 is taken from the instruction MoveL p2. The
type of movement (circular), the circular point (p3) and the speed are taken from
the MoveC instruction. The motion pointer will indicate p2 and the program
pointer will move up to MoveL p1.

5 The fourth press of the BWD button will move the robot linearly to p1 with the

A Program pointer
B Motion pointer
C Highlighting of the robtarget that the robot is moving towards, or already have reached.
3HAC16580-1 Revision: G136

2 Basic RAPID programming
2.21.3 Behavior of the backward execution

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
speed v200. The motion pointer will indicate p1 and the program pointer will move
up to MoveJ p0.

6 The first press of the FWD button will not move the robot, but the program pointer
will move to the next instruction (MoveL p2).

7 The second press of the FWD button will move the robot to p2 with the speed
v200.
1373HAC16580-1 Revision: G

2 Basic RAPID programming
2.21.3 Behavior of the backward execution

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3HAC16580-1 Revision: G138

2 Basic RAPID programming
2.22 Syntax summary

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.22 Syntax summary

2.22.1 Instructions

Data := Value

AccSet Acc Ramp

ActUnit MecUnit

Add Name AddValue

AliasIO FromSignal ToSignal

ArcRefresh

ArcKill

BitClear BitData BitPos

BitSet BitData BitPos

BookErrNo ErrorName

Break

CallByVar Name Number

CancelLoad LoadNo

CheckProgRef

CirPathMode [\PathFrame] | [\ObjectFrame] | [\CirPointOri]

Clear Name

ClearIOBuff IODevice

ClearPath

ClearRawBytes RawData [\FromIndex]

ClkReset Clock

ClkStart Clock
1393HAC16580-1 Revision: G

2 Basic RAPID programming
2.22.1 Instructions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
ClkStop Clock

Close IODevice

CloseDir Dev

! Comment

ConfJ [\On] | [\Off]

ConfL [\On] | [\Off]

CONNECT Interrupt WITH Trap routine

CopyFile OldPath NewPath

CopyRawBytes FromRawData FromIndex ToRawData ToIndex
[\NoOfBytes]

CorrClear

CorrCon Descr

CorrDiscon Descr

CorrWrite

CorrWrite Descr Data

CorrClear

DeactUnit MecUnit

Decr Name

DitherAct [\MechUnit] Axis [\Level]

DitherDeact

DropSensor Mecunt

DropWObj WObj

EOffsOff

EOffsOn [\ExeP] ProgPoint

EOffsSet EAxOffs
3HAC16580-1 Revision: G140

2 Basic RAPID programming
2.22.1 Instructions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
EraseModule ModuleName

ErrLog ErrorID [\W] Argument1 Argument2 Argument3
Argument4 Argument5

ErrRaise ErrorName ErrorID Argument1 Argument2
Argument3 Argument4 Argument5

ErrWrite [\W] Header Reason [\RL2] [\RL3] [\RL4]

Exit

ExitCycle

FOR Loopcounter FROM Startvalue TO Endvalue
[STEP Stepvalue] DO ... ENDFOR

GetDataVal Object [\Block] | [\TaskRef] | [\TaskName] Value

GetSysData DestObject [\ObjectName]

GetTrapData TrapEvent

GOTO Label

GripLoad Load

IDelete Interrupt

IDisable

IEnable

IError ErrorDomain [\ErrorId] ErrorType Interrupt

IF Condition ...

IF Condition THEN ...
{ELSEIF Condition THEN ...}
[ELSE ...]
ENDIF

Incr Name

IndAMove MecUnit Axis [\ToAbsPos] | [\ToAbsNum] Speed
1413HAC16580-1 Revision: G

2 Basic RAPID programming
2.22.1 Instructions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
[\Ramp]

IndCMove MecUnit Axis Speed [\Ramp]

IndDMove MecUnit Axis Delta Speed [\Ramp]

IndReset MecUnit Axis
[\RefPos] | [\RefNum] | [\Short] | [\Fwd] | [\Bwd] | [\Old]

IndRMove MecUnit Axis [\ToRelPos] | [\ToRelNum] | [\Short] |
[\Fwd] | [\Bwd] Speed [\Ramp]

InvertDO Signal

IOBusStart BusName

IOBusState BusName State [\Phys] | [\Logic]

IODisable UnitName MaxTime

IOEnable UnitName MaxTime

IPers Name Interrupt

IRMQMessage InterruptDataType Interrupt

ISignalAI [\Single] | [\SingleSafe] Signal Condition HighValue
LowValue DeltaValue [\DPos] | [\DNeg] Interrupt

ISignalAO [\Single] | [\SingleSafe] Signal Condition HighValue
LowValue DeltaValue [\DPos] | [\DNeg] Interrupt

ISignalDI [\Single] | [\SingleSafe] Signal TriggValue Interrupt

ISignalDO [\Single] | [\SingleSafe] Signal TriggValue Interrupt

ISignalGI [\Single] | [\SingleSafe] Signal Interrupt

ISignalGO [\Single] | [\SingleSafe] Signal Interrupt

ISleep Interrupt

ITimer [\Single] | [\SingleSafe] Time Interrupt

IVarValue VarNo Value Interrupt

IWatch Interrupt ParIdType LoadIdType Tool [\PayLoad]
3HAC16580-1 Revision: G142

2 Basic RAPID programming
2.22.1 Instructions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
[\WObj] [\ConfAngle] [\SlowTest] [\Accuracy]

Load [\Dynamic] FilePath [\File] [\CheckRef]

LoadId ParIdType LoadIdType Tool [\PayLoad] [\WObj]
[\ConfAngle] [\SlowTest] [\Accuracy]

MakeDir Path

ManLoadIdProc [\ParIdType] [\MechUnit] [\MechUnitName]
[\AxisNumber] [\PayLoad] [\ConfigAngle] [\DeactAll]
[\AlreadyActive] [\DefinedFlag]

MechUnitLoad MechUnit AxisNo Load

MotionSup [\On] | [\Off] [\TuneValue]

MoveAbsJ [\Conc] ToJointPos [\ID] Speed [\V] | [\T] Zone
[\Z] Tool [\WObj]

MoveC [\Conc] CirPoint ToPoint [\ID] Speed [\V] | [\T] Zone
[\Z] Tool [\WObj]

MoveCDO CirPoint ToPoint [\ID] Speed [\T] Zone Tool
[\WObj] Signal Value

MoveCSync CirPoint ToPoint [\ID] Speed [\T] Zone Tool
[\WObj] ProcName

MoveExtJ [\Conc] ToJointPos [\ID] Speed [\T] Zone [\Inpos]

MoveJ [\Conc] ToPoint [\ID] Speed [\V] | [\T] Zone [\Z] Tool
[\WObj]

MoveJDO ToPoint [\ID] Speed [\T] Zone Tool [\WObj]
Signal Value

MoveJSync ToPoint [\ID] Speed [\T] Zone Tool [\WObj]
ProcName

MoveL [\Conc] ToPoint [\ID] Speed [\V] | [\T] Zone [\Z]
Tool [\WObj]

MoveLDO ToPoint [\ID] Speed [\T] Zone Tool [\WObj]
1433HAC16580-1 Revision: G

2 Basic RAPID programming
2.22.1 Instructions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3HAC16580-1 Revision: G144

Signal Value

MoveLSync ToPoint [\ID] Speed [\T] Zone Tool [\WObj]
ProcName

MToolRotCalib RefTip ZPos [\XPos] Tool

MToolTCPCalib Pos1 Pos2 Pos3 Pos4 Tool MaxErr MeanErr

Open Object [\File] IODevice [\Read] | [\Write] | [\Append] | [\Bin]

OpenDir Dev Path

PackDNHeader Service Path RawData

PackRawBytes Value RawData [\Network] StartIndex
[\Hex1] | [\IntX] | [\Float4] | [\ASCII]

PathAccLim AccLim [\AccMax] DecelLim [\DecelMax]

PathRecMoveBwd [\ID] [\ToolOffs] [\Speed]

PathRecMoveFwd [\ID] [\ToolOffs] [\Speed]

PathRecStart ID

PathRecStop [\Clear]

PathResol Value

PDispOff

PDispOn [\Rot] [\ExeP] ProgPoint Tool [\WObj]

PDispSet DispFrame

Procedure { Argument }

ProcerrRecovery [\SyncOrgMoveInst] | [\SyncLastMoveInst]

PulseDO [\PLength] Signal

RAISE [Error no]

RaiseToUser [\Continue] | [\BreakOff] [\ErrorNumber]

ReadAnyBin IODevice Data [\Time]

ReadCfgData InstancePath Attribute CfgData [\ListNo]

2 Basic RAPID programming
2.22.1 Instructions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
ReadErrData TrapEvent ErrorDomain ErrorId ErrorType [\Str1]
[\Str2] [\Str3] [\Str4] [\Str5]

ReadRawBytes IODevice RawData NoOfBytes[\Time]

RemoveDir Path

RemoveFile Path

RenameFile OldPath NewPath

Reset Signal

ResetPPMoved

ResetRetryCount

RestoPath

RETURN [Return value]

Rewind IODevice

RMQFindSlot Slot Name

RMQGetMessage Message

RMQGetMsgData Message Data

RMQGetMsgHeader Message [\Header] [\SenderId] [\UserDef]

RMQSendMessage Slot SendData [\UserDef]

RMQSendWait Slot SendData [\UserDef] Message
ReceiveDataType [\TimeOut]

Save [\TaskRef] | [\TaskName] ModuleName [\FilePath] [\File]

SearchC [\Stop] | [\PStop] | [\SStop] [\Sup] Signal SearchPoint
CirPoint ToPoint [\ID] Speed [\V] | [\T] Tool [\WObj]

SearchExtJ [\Stop] | [\PStop] | [\SStop] [\Sup] Signal
SearchJointPos ToJointPos [\ID] Speed | [\T]

SearchL [\Stop] | [\PStop] | [\SStop] [\Sup] Signal SearchPoint
1453HAC16580-1 Revision: G

2 Basic RAPID programming
2.22.1 Instructions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
ToPoint [\ID] Speed [\V] | [\T] Tool [\WObj]

Set Signal

SetAllDataVal Type [\TypeMod] [\Object] [\Hidden] Value

SetAO Signal Value

SetDataSearch Type [\TypeMod] [\Object] [\PersSym] [\VarSym]
[\ConstSym] [\InTask] | [\InMod] [\InRout]
[\GlobalSym] | [\LocalSym]

SetDataVal Object [\Block] | [\TaskRef] | [\TaskName] Value

SetDO [\SDelay] Signal Value

SetGO Signal Value

SetSysData SourceObject [\ObjectName]

SingArea [\Wrist] | [\Arm] | [\Off]

SkipWarn

SocketAccept Socket ClientSocket [\ClientAddress] [\Time]

SocketBind Socket LocalAddress LocalPort

SocketClose Socket

SocketConnect Socket Address Port [\Time]

SocketCreate Socket

SocketListen Socket

SocketReceive Socket [\Str] | [\RawData] | [\Data] [\ReadNoOfBytes]
[\NoRecBytes] [\Time]

SocketSend Socket [\Str] | [\RawData] | [\Data] [\NoOfBytes]

SoftAct Axis Softness [\Ramp]

SoftDeact [\Ramp]

SpcCon Descr Status [\GrpSize] [\Teach] [\Strict] [\Header]
[\BackupFile]
3HAC16580-1 Revision: G146

2 Basic RAPID programming
2.22.1 Instructions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
SpcDiscon Descr

SpcDump

SpcRead

SpcStat

SpeedRefresh Override

SpotJ

SpotL ToPoint Speed Spot [\InPos] [\NoConc] [\Retract] Gun
Tool [\WObj]

SpotML

SpyStart File

SpyStop

StartLoad [\Dynamic] FilePath [\File] LoadNo

StartMove [\AllMotionTasks]

StartMoveRetry

StepBwdPath StepLength StepTime

SToolRotCalib RefTip ZPos XPos Tool

SToolTCPCalib Pos1 Pos2 Pos3 Pos4 Tool MaxErr MeanErr

Stop [\NoRegain] | [\AllMoveTasks]

StopMove [\Quick][\AllMotionTasks]

StopMoveReset [\AllMotionTasks]

StorePath [\KeepSync]

SyncMoveOff SyncID [\TimeOut]

SyncMoveOn SyncID TaskList [\TimeOut]

SyncMoveSuspend
1473HAC16580-1 Revision: G

2 Basic RAPID programming
2.22.1 Instructions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
SyncMoveResume

SyncMoveUndo

SyncToSensor Mecunt [On/Off]

SystemStopAction [\Stop] [\StopBlock] [\Halt]

TEST Test data {CASE Test value {, Test value} : ...}
[DEFAULT: ...]

ENDTEST

TestSignDefine Channel SignalId MechUnit Axis SampleTime

TestSignReset

TextTabInstall File

TPErase

TPReadFK Answer String FK1 FK2 FK3 FK4 FK5
[\MaxTime] [\DIBreak] [\DOBreak] [\BreakFlag]

TPReadNum Answer String [\MaxTime] [\DIBreak] [\DOBreak]
 [\BreakFlag]

TPShow Window

TPWrite String [\Num] | [\Bool] | [\Pos] | [\Orient]

TriggC CirPoint ToPoint [\ID] Speed [\T] Trigg_1 [\T2] [\T3]
[\T4] [\T5] [\T6] [\T7] [\T8] Zone Tool [\WObj]

TriggCheckIO TriggData Distance [\Start] | [\Time] Signal
Relation CheckValue [\StopMove] Interrupt

TriggEqip

TriggInt TriggData Distance [\Start] | [\Time] Interrupt

TriggIO TriggData Distance
[\Start] | [\Time] [\DOp] | [\GOp] | [\AOp] SetValue
[\DODelay] | [\AORamp]

TriggJ ToPoint [\ID] Speed [\T] Trigg_1 [\T2] [\T3] [\T4]
3HAC16580-1 Revision: G148

2 Basic RAPID programming
2.22.1 Instructions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
[\T5] [\T6] [\T7] [\T8] Zone Tool [\WObj]

TriggL ToPoint [\ID] Speed [\T] Trigg_1 [\T2] [\T3] [\T4]
[\T5] [\T6] [\T7] [\T8] Zone Tool [\WObj]

TriggLIOs ToPoint [\ID] Speed [\T] [\TriggData1] [\TriggData2]
Zone Tool [\WObj]

TriggRampAO TriggData Distance [\Start] EquipLag AOutput SetValue
RampLength [\Time]

TriggSpeed TriggData Distance [\Start] ScaleLag AO
ScaleValue [\DipLag] [\ErrDO] [\Inhib]

TriggStopProc RestartRef [\DO1] [\GO1] [\GO2] [\GO3] [\GO4]
ShadowDO

TryInt DataObj

TuneReset

TuneServo MecUnit Axis TuneValue [\Type]

UIMsgBox [\Header] MsgLine1 [\MsgLine2] [\MsgLine3]
[MsgLine4] [\MsgLine5] [\Wrap] [\Buttons] [\Icon] [\Image]
[\Result] [\MaxTime] [\DIBreak] [\DOBreak] [\BreakFlag]

UIShow AssemblyName TypeName [\InitCmd] [\InstanceId]
[\Status] [\NoCloseBtn]

UnLoad [\ErrIfChanged] | [\Save] FilePath [\File]

UnpackRawBytes RawData [\Network] StartIndex Value
1493HAC16580-1 Revision: G

2 Basic RAPID programming
2.22.1 Instructions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
[\Hex1] | [\IntX] | [\Float4] | [\ASCII]

WaitAI Signal [\LT] [\GT] Value [\MaxTime]

WaitAO Signal [\LT] [\GT] Value [\MaxTime]

WaitDI Signal Value [\MaxTime] [\TimeFlag]

WaitDO Signal Value [\MaxTime] [\TimeFlag]

WaitGI Signal [\NOTEQ] [\LT] [\GT] Value [\MaxTime]

WaitGO Signa [\NOTEQ] [\LT] [\GT]l Value [\MaxTime]

WaitLoad [\UnloadPath] [\UnloadFile] LoadNo [\CheckRef]

WaitRob [\InPos] | [\ZeroSpeed]

WaitSensor Mecunt[\RelDist] [\PredTime] [\MaxTime]
[\TimeFlag]

WaitSyncTask SyncID TaskList [\TimeOut]

WaitTime [\InPos] Time

WaitUntil [\InPos] Cond [\MaxTime] [\TimeFlag] [\PollRate]

WaitWObj WObj [\RelDist]

WarmStart

VelSet Override Max

WHILE Condition DO ...
ENDWHILE

WorldAccLim [\On] | [\Off]

Write IODeviceString [\Num] | [\Bool] | [\Pos] | [\Orient]
3HAC16580-1 Revision: G150

2 Basic RAPID programming
2.22.1 Instructions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
[\NoNewLine]

WriteAnyBin IODevice Data

WriteBin IODevice Buffer NChar

WriteCfgData InstancePath Attribute CfgData [\ListNo]

WriteRawBytes IODevice RawData [\NoOfBytes]

WriteStrBin IODevice Str

WZBoxDef [\Inside] | [\Outside] Shape LowPoint HighPoint

WZCylDef [\Inside] | [\Outside] Shape CentrePoint Radius Height

WZDisable WorldZone

WZDOSet [\Temp] | [\Stat] WorldZone [\Inside] | [\Before] Shape
Signal SetValue

WZEnable WorldZone

WZFree WorldZone

WZHomeJointDef [\Inside] | [\Outside] Shape MiddleJointVal
DeltaJointVal

WZLimJointDef [\Inside] | [\Outside] Shape LowJointVal
HighJointVal

WZLimSup [\Temp] | [\Stat] WorldZone Shape

WZSphDef [\Inside] | [\Outside] Shape CentrePoint Radius
1513HAC16580-1 Revision: G

2 Basic RAPID programming
2.22.2 Functions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
2.22.2 Functions

Abs (Input)

ACos (Value)

AOutput (Signal)

ArgName (Parameter)

ASin (Value)

ATan (Value)

ATan2 (Y X)

BitAnd (BitData1 BitData2)

BitCheck (BitData BitPos)

BitLSh (BitData ShiftSteps)

BitNeg (BitData1)

BitOr (BitData1 BitData2)

BitRSh (BitData1 ShiftSteps)

BitXOr (BitData1 BitData2)

ByteToStr (ByteData [\Hex] | [\Okt] | [\Bin] | [\Char])

CalcJointT (Rob_target Tool [\WObj])

CalcRobT (Joint_target Tool [\WObj])

CalcRotAxisFrame (MechUnit [\AxisNo] TargetList TargetsInList
MaxErr MeanErr)

CalcRotAxFrameZ (TargetList TargetsInList PositiveZPoint
3HAC16580-1 Revision: G152

2 Basic RAPID programming
2.22.2 Functions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
MaxErr MeanErr)

CDate

CJointT

ClkRead (Clock)

CorrRead

Cos (Angle)

CPos ([\Tool] [\WObj])

CRobT ([\Tool] [\WObj])

CSpeedOverride ([\CTask])

CTime

CTool

CWObj

DecToHex (Str)

DefAccFrame (TargetListOne TargetListTwo TargetsInList
MaxErr MeanErr)

DefDFrame (OldP1 OldP2 OldP3 NewP1 NewP2 NewP3)

DefFrame (NewP1 NewP2 NewP3 [\Origin])

Dim (ArrPar DimNo)

Distance (Point1 Point2)

DOutput (Signal)

DotProd (Vector1 Vector2)

EventType

EulerZYX ([\X] | [\Y] | [\Z] Rotation)

ExecHandler

ExecLevel
1533HAC16580-1 Revision: G

2 Basic RAPID programming
2.22.2 Functions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Exp (Exponent)

FileSize (Path)

FileTime (Path [\ModifyTime] | [\AccessTime] | [\StatCTime]
[\StrDig])

FSSize (Name [\Total] | [\Free])

GetMecUnitName (MechUnit)

GetNextMechUnit (ListNumber UnitName) [\MecRef]
[\TCPRob] [\NoOfAxes] [\MecTaskNo] [\MotPlanNo] [\Active]

GetNextSym (Object Block [\Recursive])

GetSysInfo ([\SerialNo] | [\SWVersion] | [\RobotType] | [\CtrlId] |
[\LanpIp] | [\CtrlLang])

GetTaskName ([\TaskNo])

GetTime ([\WDay] | [\Hour] | [\Min] | [\Sec])

GOutput (Signal)

HexToDec (Str)

IndInpos (MecUnit Axis)

IndSpeed (MecUnit Axis [\InSpeed] | [\ZeroSpeed])

IOUnitState (UnitName [\Phys] | [\Logic])

IsFile (Path[\Directory] [\Fifo] [\RegFile] [\BlockSpec]
[\CharSpec])

IsMechUnitActive (MechUnit)

IsPers (DatObj)

IsStopMoveAct ([\FromMoveTask] | [\FromNonMoveTask])

IsStopStateEvent ([\PPMoved] | [\PPToMain])

IsSyncMoveOn

IsSysId (SystemId)
3HAC16580-1 Revision: G154

2 Basic RAPID programming
2.22.2 Functions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
IsVar (DatObj)

MaxRobSpeed

MirPos (Point MirPlane [\WObj] [\MirY])

ModExist (ModuleName)

ModTime (Object [\StrDig])

MotionPlannerNo

NonMotionMode ([\Main])

NOrient (Rotation)

NumToStr (Val Dec [\Exp])

Offs (Point XOffset YOffset ZOffset)

OpMode

OrientZYX (ZAngle YAngle XAngle)

ORobT (OrgPoint [\InPDisp] | [\InEOffs])

ParIdPosValid (ParIdType Pos AxValid [\ConfAngle])

ParIdRobValid (ParIdType)

PathLevel ()

PathRecValidBwd ([\ID])

PathRecValidFwd ([\ID])

PFRestart ([\Base] | [\Irpt])

PoseInv (Pose)

PoseMult (Pose1 Pose2)

PoseVect (Pose Pos)

Pow (Base Exponent)
1553HAC16580-1 Revision: G

2 Basic RAPID programming
2.22.2 Functions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
PPMovedInManMode

Present (OptPar)

ProgMemFree

RawBytesLen (RawData)

ReadBin (IODevice [\Time])

ReadDir (Dev FileName)

ReadMotor ([\MecUnit] Axis)

ReadNum (IODevice [\Time])

ReadStr (IODevice [\Time])

ReadStrBin (IODevice NoOfChars [\Time])

RelTool (Point Dx Dy Dz [\Rx] [\Ry] [\Rz])

RemainingRetries

RMQGetSlotName (Slot)

RobOS

Round (Val [\Dec])

RunMode ([\Main])

Sin (Angle)

SocketGetStatus (Socket)

Sqrt (Value)

StrDigCmp (StrDig1 Relation StrDig2)

StrDigCalc (StrDig1 Operation StrDig2)
3HAC16580-1 Revision: G156

2 Basic RAPID programming
2.22.2 Functions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
StrFind (Str ChPos Set [\NotInSet])

StrLen (Str)

StrMap (Str FromMap ToMap)

StrMatch (Str ChPos Pattern)

StrMemb (Str ChPos Set)

StrOrder (Str1 Str2 Order)

StrPart (Str ChPos Len)

StrToByte (ConStr [\Hex] | [\Okt] | [\Bin] | [\Char])

StrToVal (Str Val)

Tan (Angle)

TaskRunMec

TaskRunRob

TestAndSet (Object)

TestDI (Signal)

TestSignRead (Channel)

TextGet (Table Index)

TextTabFreeToUse (TableName)

TextTabGet (TableName)

Trunc (Val [\Dec])

UIAlphaEntry ([\Header] [\Message] | [\MsgArray] [\Wrap] [\Icon]
[\InitString] [\MaxTime] [\DIBreak] [\DOBreak] [\BreakFlag])

UIClientExist

UIListView ([\Result] [\Header] ListItems [\Buttons] | [\BtnArray]
[\Icon] [\DefaultIndex] [\MaxTime] [\DIBreak] [\DOBreak]
[\BreakFlag]

UIMessageBox ([\Header] [\Message] | [\MsgArray] [\Wrap]
1573HAC16580-1 Revision: G

2 Basic RAPID programming
2.22.2 Functions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
[\Buttons] | [\BtnArray] [\DefaultBtn] [\Icon] [\Image] [\MaxTime]
[\DIBreak] [\DOBreak] [\BreakFlag])

UINumEntry ([\Header] [\Message] | [\MsgArray] [\Wrap] [\Icon]
[\InitValue] [\MinValue] [\MaxValue] [\AsInteger] [\MaxTime]
[\DIBreak] [\DOBreak] [\BreakFlag])

UINumTune ([\Header] [\Message] | [\MsgArray] [\Wrap] [\Icon]
InitValue Increment [\MinValue] [\MaxValue] [\MaxTime]
[\DIBreak] [\DOBreak] [\BreakFlag])

VaidIO (Signal)

ValToStr (Val)

VectMagn (Vector)
3HAC16580-1 Revision: G158

3 Motion and IO programming
3.1 Coordinate systems

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3 Motion and IO programming

3.1 Coordinate systems

3.1.1 The robot’s tool centre point (TCP)

The position of the robot and its movements are always related to the tool centre point.
This point is normally defined as being somewhere on the tool, e.g. in the muzzle of a
glue gun, at the centre of a gripper or at the end of a grading tool.

Several TCPs (tools) may be defined, but only one may be active at any one time.
When a position is recorded, it is the position of the TCP that is recorded. This is also
the point that moves along a given path, at a given velocity.

If the robot is holding a work object and working on a stationary tool, a stationary TCP
is used. If that tool is active, the programmed path and speed are related to the work
object. See 3.1.3.3 Stationary TCPs on page 166.

3.1.2 Coordinate systems used to determine the position of the TCP

The tool (TCP’s) position can be specified in different coordinate systems to facilitate
programming and readjustment of programs.

The coordinate system defined depends on what the robot has to do. When no
coordinate system is defined, the robot’s positions are defined in the base coordinate
system.

3.1.2.1 Base coordinate system

In a simple application, programming can be done in the base coordinate system; here
the z-axis is coincident with axis 1 of the robot (see Figure 6).

Figure 6 The base coordinate system.

Z

X

Y

1593HAC16580-1 Revision: G

3 Motion and IO programming
3.1.2 Coordinate systems used to determine the position of the TCP

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
The base coordinate system is located on the base of the robot:

- The origin is situated at the intersection of axis 1 and the base mounting surface.
- The xy plane is the same as the base mounting surface.
- The x-axis points forwards.
- The y-axis points to the left (from the perspective of the robot).
- The z-axis points upwards.

3.1.2.2 World coordinate system

If the robot is floor-mounted, programming in the base coordinate system is easy. If,
however, the robot is mounted upside down (suspended), programming in the base
coordinate system is more difficult because the directions of the axes are not the same
as the principal directions in the working space. In such cases, it is useful to define a
world coordinate system. The world coordinate system will be coincident with the base
coordinate system, if it is not specifically defined.

Sometimes, several robots work within the same working space at a plant. A common
world coordinate system is used in this case to enable the robot programs to
communicate with one another. It can also be advantageous to use this type of system
when the positions are to be related to a fixed point in the workshop. See the example
in Figure 7.

Figure 7 Two robots (one of which is suspended) with a common world coordinate system.

Base coordinate system robot 2

x

y

z

World coordinate system

Base coordinate system robot 1

Z

X

Y
Z

X

Y

3HAC16580-1 Revision: G160

3 Motion and IO programming
3.1.2 Coordinate systems used to determine the position of the TCP

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3.1.2.3 User coordinate system

A robot can work with different fixtures or working surfaces having different positions
and orientations. A user coordinate system can be defined for each fixture. If all
positions are stored in object coordinates, you will not need to reprogram if a fixture
must be moved or turned. By moving/turning the user coordinate system as much as
the fixture has been moved/turned, all programmed positions will follow the fixture
and no reprogramming will be required.

The user coordinate system is defined based on the world coordinate system (see Figure 8).

Figure 8 Two user coordinate systems describe the position of two different fixtures.

3.1.2.4 Object coordinate system

The user coordinate system is used to get different coordinate systems for different fixtures
or working surfaces. A fixture, however, may include several work objects that are to be
processed or handled by the robot. Thus, it often helps to define a coordinate system for each
object in order to make it easier to adjust the program if the object is moved or if a new
object, the same as the previous one, is to be programmed at a different location. A
coordinate system referenced to an object is called an object coordinate system. This
coordinate system is also very suited to off-line programming since the positions specified
can usually be taken directly from a drawing of the work object. The object coordinate
system can also be used when jogging the robot.

Base coordinate system

x

y

z

World coordinate system

User coordinate system 1

Z

X

Y

Y

Z

X

User coordinate system 2

Y

Z

X

1613HAC16580-1 Revision: G

3 Motion and IO programming
3.1.2 Coordinate systems used to determine the position of the TCP

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
The object coordinate system is defined based on the user coordinate system (see Figure 9).

Figure 9 Two object coordinate systems describe the position of two different work objects
located in the same fixture.

The programmed positions are always defined relative to an object coordinate system.
If a fixture is moved/turned, this can be compensated for by moving/turning the user
coordinate system. Neither the programmed positions nor the defined object
coordinate systems need to be changed. If the work object is moved/turned, this can be
compensated for by moving/turning the object coordinate system.

If the user coordinate system is movable, that is, coordinated external axes are used,
then the object coordinate system moves with the user coordinate system. This makes
it possible to move the robot in relation to the object even when the workbench is being
manipulated.

3.1.2.5 Displacement coordinate system

Sometimes, the same path is to be performed at several places on the same object. To
avoid having to re-program all positions each time, a coordinate system, known as the
displacement coordinate system, is defined. This coordinate system can also be used in
conjunction with searches, to compensate for differences in the positions of the
individual parts.

The displacement coordinate system is defined based on the object coordinate system
(see Figure 10).

User coordinate system

x

y

z

World coordinate system

Object coordinate system 2

y y

z

z

x
x

y

z

x

Object coordinate system 1
3HAC16580-1 Revision: G162

3 Motion and IO programming
3.1.2 Coordinate systems used to determine the position of the TCP

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Figure 10 If program displacement is active, all positions are displaced.

3.1.2.6 Coordinated external axes

Coordination of user coordinate system

If a work object is placed on an external mechanical unit, that is moved whilst the robot
is executing a path defined in the object coordinate system, a movable user coordinate
system can be defined. The position and orientation of the user coordinate system will,
in this case, be dependent on the axes rotations of the external unit. The programmed
path and speed will thus be related to the work object (see Figure 11) and there is no
need to consider the fact that the object is moved by the external unit.

Figure 11 A user coordinate system, defined to follow the movements of a 3-axis external
mechanical unit.

Original position

New position

x

y
x

y

Object coordinate system

Displacement coordinate system

joint 1

joint 2 joint 3

x

y

z

World coordinate system

User coordinate system

y

z

x

1633HAC16580-1 Revision: G

3 Motion and IO programming
3.1.3 Coordinate systems used to determine the direction of the tool

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Coordination of base coordinate system

A movable coordinate system can also be defined for the base of the robot. This is of
interest for the installation when the robot is mounted on a track or a gantry, for
example. The position and orientation of the base coordinate system will, as for the
moveable user coordinate system, be dependent on the movements of the external unit.
The programmed path and speed will be related to the object coordinate system (Figure
12) and there is no need to think about the fact that the robot base is moved by an
external unit. A coordinated user coordinate system and a coordinated base coordinate
system can both be defined at the same time.

Figure 12 Coordinated interpolation with a track moving the base coordinate system of the
robot.

To be able to calculate the user and the base coordinate systems when involved units
are moved, the robot must be aware of:

- The calibration positions of the user and the base coordinate systems
- The relations between the angles of the external axes and the translation/

rotation of the user and the base coordinate systems.

These relations are defined in the system parameters.

3.1.3 Coordinate systems used to determine the direction of the tool

The orientation of a tool at a programmed position is given by the orientation of the
tool coordinate system. The tool coordinate system is referenced to the wrist
coordinated system, defined at the mounting flange on the wrist of the robot.

Object coordinate system

Base coordinate system

World coordinate
system

Track

User coordinate system
3HAC16580-1 Revision: G164

3 Motion and IO programming
3.1.3 Coordinate systems used to determine the direction of the tool

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3.1.3.1 Wrist coordinate system

In a simple application, the wrist coordinate system can be used to define the
orientation of the tool; here the z-axis is coincident with axis 6 of the robot
(see Figure 13).

Figure 13 The wrist coordinate system.

The wrist coordinate system cannot be changed and is always the same as the mounting
flange of the robot in the following respects:

- The origin is situated at the centre of the mounting flange (on the mounting surface).
- The x-axis points in the opposite direction, towards the control hole of the

mounting flange.
- The z-axis points outwards, at right angles to the mounting flange.

3.1.3.2 Tool coordinate system

The tool mounted on the mounting flange of the robot often requires its own coordinate
system to enable definition of its TCP, which is the origin of the tool coordinate system.
The tool coordinate system can also be used to get appropriate motion directions when
jogging the robot.

If a tool is damaged or replaced, all you have to do is redefine the tool coordinate
system. The program does not normally have to be changed.

The TCP (origin) is selected as the point on the tool that must be correctly positioned,
e.g. the muzzle on a glue gun. The tool coordinate axes are defined as those natural for
the tool in question.

x
z

y

1653HAC16580-1 Revision: G

3 Motion and IO programming
3.1.3 Coordinate systems used to determine the direction of the tool

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Figure 14 Tool coordinate system, as usually defined for an arc-welding gun (left) and
a spot welding gun (right).

The tool coordinate system is defined based on the wrist coordinate system
(see Figure 15).

Figure 15 The tool coordinate system is defined relative to the wrist coordinate system,
here for a gripper.

3.1.3.3 Stationary TCPs

If the robot is holding a work object and working on a stationary tool, a stationary TCP
is used. If that tool is active, the programmed path and speed are related to the work
object held by the robot.

This means that the coordinate systems will be reversed, as in Figure 16.

Topx

z
x

z

Top

z

y

x

Tool coordinate system
3HAC16580-1 Revision: G166

3 Motion and IO programming
3.1.3 Coordinate systems used to determine the direction of the tool

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Figure 16 If a stationary TCP is used, the object coordinate system is usually based on the wrist
coordinate system.

In the example in Figure 16, neither the user coordinate system nor program
displacement is used. It is, however, possible to use them and, if they are used, they
will be related to each other as shown in Figure 17.

Base coordinate system

x

y

z

World coordinate system

Z

X

Y

Tool coordinate system

Z

X

Y

Z

YX

Object coordinate system
1673HAC16580-1 Revision: G

3 Motion and IO programming
3.1.4 Related information

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Figure 17 Program displacement can also be used together with stationary TCPs.

3.1.4 Related information

Described in:
Definition of the world coordinate system Technical reference manual - System parameters

Definition of the user coordinate system Operating manual - IRC5 with FlexPendant - Calibration,
Data Types - wobjdata

Definition of the object coordinate system Operating manual - IRC5 with FlexPendant - Calibration,
Data Types - wobjdata

Definition of the tool coordinate system Operating manual - IRC5 with FlexPendant - Calibration,
Data Types - tooldata

Definition of a tool centre point Operating manual - IRC5 with FlexPendant - Calibration,
Data Types - tooldata

Definition of displacement frame Operating manual - IRC5 with FlexPendant - Calibration,
RAPID Summary - Motion Settings

Jogging in different coordinate systems Operating manual - IRC5 with FlexPendant - Jogging

x

y

z

Wrist coordinate system

x

y

z

Object coordinate system

x

y

z

User coordinate system

x

y

z

 Displacement coordinate system
3HAC16580-1 Revision: G168

3 Motion and IO programming
3.2 Positioning during program execution

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3.2 Positioning during program execution

3.2.1 General

During program execution, positioning instructions in the robot program control all
movements. The main task of the positioning instructions is to provide the following
information on how to perform movements:

- The destination point of the movement (defined as the position of the tool centre
point, the orientation of the tool, the configuration of the robot and the position
of the external axes).

- The interpolation method used to reach the destination point, e.g. joint
interpolation, linear interpolation or circle interpolation.

- The velocity of the robot and external axes.
- The zone data (defines how the robot and the external axes are to pass the

destination point).
- The coordinate systems (tool, user and object) used for the movement.

As an alternative to defining the velocity of the robot and the external axes, the time
for the movement can be programmed. This should, however, be avoided if the
weaving function is used. Instead the velocities of the orientation and external axes
should be used to limit the speed, when small or no TCP-movements are made.

In material handling and pallet applications with intensive and frequent
movements, the drive system supervision may trip out and stop the robot in order
to prevent overheating of drives or motors. If this occurs, the cycle time needs to
be slightly increased by reducing programmed speed or acceleration.

3.2.2 Interpolation of the position and orientation of the tool

3.2.2.1 Joint interpolation

When path accuracy is not too important, this type of motion is used to move the tool
quickly from one position to another. Joint interpolation also allows an axis to move from
any location to another within its working space, in a single movement.

All axes move from the start point to the destination point at constant axis velocity (see
Figure 18).
1693HAC16580-1 Revision: G

3 Motion and IO programming
3.2.2 Interpolation of the position and orientation of the tool

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Figure 18 Joint interpolation is often the fastest way to move between two points as the robot
axes follow the closest path between the start point and the destination point (from the
perspective of the axis angles).

The velocity of the tool centre point is expressed in mm/s (in the object coordinate
system). As interpolation takes place axis-by-axis, the velocity will not be exactly the
programmed value.

During interpolation, the velocity of the limiting axis, i.e. the axis that travels fastest
relative to its maximum velocity in order to carry out the movement, is determined.
Then, the velocities of the remaining axes are calculated so that all axes reach the
destination point at the same time.

All axes are coordinated in order to obtain a path that is independent of the velocity.
Acceleration is automatically optimised to the max performance of the robot.

3.2.2.2 Linear interpolation

During linear interpolation, the TCP travels along a straight line between the start and
destination points (see Figure 19).

e

Figure 19 Linear interpolation without reorientation of the tool.

To obtain a linear path in the object coordinate system, the robot axes must follow a
non-linear path in the axis space. The more non-linear the configuration of the robot is,
the more accelerations and decelerations are required to make the tool move in a
straight line and to obtain the desired tool orientation. If the configuration is extremely
non-linear (e.g. in the proximity of wrist and arm singularities), one or more of the axes
will require more torque than the motors can give. In this case, the velocity of all axes
will automatically be reduced.

Destination point
Joint interpolated
pathStart point

Start point
3HAC16580-1 Revision: G170

3 Motion and IO programming
3.2.2 Interpolation of the position and orientation of the tool

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
The orientation of the tool remains constant during the entire movement unless a
reorientation has been programmed. If the tool is reorientated, it is rotated at constant
velocity.

A maximum rotational velocity (in degrees per second) can be specified when rotating
the tool. If this is set to a low value, reorientation will be smooth, irrespective of the
velocity defined for the tool centre point. If it is a high value, the reorientation velocity is
only limited by the maximum motor speeds. As long as no motor exceeds the limit for
the torque, the defined velocity will be maintained. If, on the other hand, one of the
motors exceeds the current limit, the velocity of the entire movement (with respect to
both the position and the orientation) will be reduced.

All axes are coordinated in order to obtain a path that is independent of the velocity.
Acceleration is optimised automatically.

3.2.2.3 Circular interpolation

A circular path is defined using three programmed positions that define a circle
segment. The first point to be programmed is the start of the circle segment. The next
point is a support point (circle point) used to define the curvature of the circle, and the
third point denotes the end of the circle (see Figure 20).

The three programmed points should be dispersed at regular intervals along the arc of
the circle to make this as accurate as possible.

The orientation defined for the support point is used to select between the short and the
long twist for the orientation from start to destination point.

If the programmed orientation is the same relative to the circle at the start and the
destination points, and the orientation at the support is close to the same orientation
relative to the circle, the orientation of the tool will remain constant relative to the path.

Figure 20 Circular interpolation with a short twist for part of a circle (circle segment) with a
start point, circle point and destination point.

However, if the orientation at the support point is programmed closer to the orientation
rotated 180°, the alternative twist is selected (see Figure 21).

Start point

Circle point

Destination point
1713HAC16580-1 Revision: G

3 Motion and IO programming
3.2.2 Interpolation of the position and orientation of the tool

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Figure 21 Circular interpolation with a long twist for orientation is achieved by defining the
orientation in the circle point in the opposite direction compared to the start point.

As long as all motor torques do not exceed the maximum permitted values, the tool will
move at the programmed velocity along the arc of the circle. If the torque of any of the
motors is insufficient, the velocity will automatically be reduced at those parts of the
circular path where the motor performance is insufficient.

All axes are coordinated in order to obtain a path that is independent of the velocity.
Acceleration is optimised automatically.

3.2.2.4 SingArea\Wrist

During execution in the proximity of a singular point, linear or circular interpolation
may be problematic. In this case, it is best to use modified interpolation, which means
that the wrist axes are interpolated axis-by-axis, with the TCP following a linear or
circular path. The orientation of the tool, however, will differ somewhat from the
programmed orientation. The resulting orientation in the programmed point may also
differ from the programmed orientation due to two singularities (se below).

Start point

Circle point

Destination point

ABB

TCP

a2
z1

WCP

move
3HAC16580-1 Revision: G172

3 Motion and IO programming
3.2.3 Interpolation of corner paths

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
The first singularity is when TCP is straight ahead from axis 2 (a2 in the figure above).
The TCP can’t pass to the other side of axis 2, instead will axis 2 and 3 fold a bit more
to keep the TCP on the same side and the end orientation of the move will then be
turned away from the programmed orientation with the same size.

The second singularity is when TCP will pass near the z-axis of axis 1 (z1 in the figure
above). The axis 1 will in this case turn around with full speed and the tool
reorientation will follow in the same way. The direction of the turn is dependent of
what side the TCP will go. It´s recommended to change to joint interpolation
(MoveJ) near the z-axis. Note that it’s the TCP that make the singularity not the WCP
as when SingArea\Off is used.

In the SingArea\Wrist case the orientation in the circle support point will be the same
as programmed. However, the tool will not have a constant direction relative to the
circle plane as for normal circular interpolation. If the circle path passes a singularity,
the orientation in the programmed positions sometimes must be modified to avoid big
wrist movements, which can occur if a complete wrist reconfiguration is generated
when the circle is executed (joints 4 and 6 moved 180 degrees each).

3.2.3 Interpolation of corner paths

The destination point is defined as a stop point in order to get point-to-point movement.
This means that the robot and any external axes will stop and that it will not be possible
to continue positioning until the velocities of all axes are zero and the axes are close to
their destinations.

Fly-by points are used to get continuous movements past programmed positions. In this
way, positions can be passed at high speed without having to reduce the speed
unnecessarily. A fly-by point generates a corner path (parabola path) past the programmed
position, which generally means that the programmed position is never reached. The
beginning and end of this corner path are defined by a zone around the programmed
position (see Figure 22).

Figure 22 A fly-by point generates a corner path to pass the programmed position.

The zone for the path

Corner path

Programmed
positionof the TCP
1733HAC16580-1 Revision: G

3 Motion and IO programming
3.2.3 Interpolation of corner paths

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
All axes are coordinated in order to obtain a path that is independent of the velocity.
Acceleration is optimised automatically.

3.2.3.1 Joint interpolation in corner paths

The size of the corner paths (zones) for the TCP movement is expressed in mm (see
Figure 23). Since the interpolation is performed axis-by-axis, the size of the zones (in
mm) must be recalculated in axis angles (radians). This calculation has an error factor
(normally max. 10%), which means that the true zone will deviate somewhat from the
one programmed.

If different speeds have been programmed before or after the position, the transition
from one speed to the other will be smooth and take place within the corner path
without affecting the actual path.

Figure 23 During joint interpolation, a corner path is generated in order to pass a fly-by point.

3.2.3.2 Linear interpolation of a position in corner paths

The size of the corner paths (zones) for the TCP movement is expressed in mm (see
Figure 24).

Start point

ZoneProgrammed
fly-by point

Corner path
3HAC16580-1 Revision: G174

3 Motion and IO programming
3.2.3 Interpolation of corner paths

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Figure 24 During linear interpolation, a corner path is generated in order to pass a fly-by point.

If different speeds have been programmed before or after the corner position, the
transition will be smooth and take place within the corner path without affecting the
actual path.

If the tool is to carry out a process (such as arc-welding, gluing or water cutting) along
the corner path, the size of the zone can be adjusted to get the desired path. If the shape
of the parabolic corner path does not match the object geometry, the programmed
positions can be placed closer together, making it possible to approximate the desired
path using two or more smaller parabolic paths.

3.2.3.3 Linear interpolation of the orientation in corner paths

Zones can be defined for tool orientations, just as zones can be defined for tool
positions. The orientation zone is usually set larger than the position zone. In this case,
the reorientation will start interpolating towards the orientation of the next position
before the corner path starts. The reorientation will then be smoother and it will
probably not be necessary to reduce the velocity to perform the reorientation.

The tool will be reorientated so that the orientation at the end of the zone will be the
same as if a stop point had been programmed (see Figure 25a-c).

Figure 25a Three positions with different tool orientations are programmed as above.

Figure 25b If all positions were stop points, program execution would look like this.

Start point

ZoneProgrammed
corner position

Corner path
1753HAC16580-1 Revision: G

3 Motion and IO programming
3.2.3 Interpolation of corner paths

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Figure 25c If the middle position was a fly-by point, program execution would look like this.

The orientation zone for the tool movement is normally expressed in mm. In this way,
you can determine directly where on the path the orientation zone begins and ends. If
the tool is not moved, the size of the zone is expressed in angle of rotation degrees
instead of TCP-mm.

If different reorientation velocities are programmed before and after the fly-by point,
and if the reorientation velocities limit the movement, the transition from one velocity
to the other will take place smoothly within the corner path.

3.2.3.4 Interpolation of external axes in corner paths

Zones can also be defined for external axes, in the same manner as for orientation. If
the external axis zone is set to be larger than the TCP zone, the interpolation of the
external axes towards the destination of the next programmed position, will be started
before the TCP corner path starts. This can be used for smoothing external axes
movements in the same way as the orientation zone is used för the smoothing of the
wrist movements.

3.2.3.5 Corner paths when changing the interpolation method

Corner paths are also generated when one interpolation method is exchanged for
another. The interpolation method used in the actual corner paths is chosen in such a
way as to make the transition from one method to another as smooth as possible. If the
corner path zones for orientation and position are not the same size, more than one
interpolation method may be used in the corner path (see Figure 26).

Operation zone size
3HAC16580-1 Revision: G176

3 Motion and IO programming
3.2.3 Interpolation of corner paths

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Figure 26 Interpolation when changing from one interpolation method to another. Linear
interpolation has been programmed between p1 and p2; joint interpolation between
p2 and p3; and Sing Area\Wrist interpolation between p3 and p4.

If the interpolation is changed from a normal TCP-movement to a reorientation without
a TCP-movement or vice versa, no corner zone will be generated. The same will be the
case if the interpolation is changed to or from an external joint movement without
TCP-movement.

3.2.3.6 Interpolation when changing coordinate system

When there is a change of coordinate system in a corner path, e.g. a new TCP or a new
work object, joint interpolation of the corner path is used. This is also applicable when
changing from coordinated operation to non-coordinated operation, or vice versa.

3.2.3.7 Corner paths with overlapping zones

If programmed positions are located close to each other, it is not unusual for the
programmed zones to overlap. To get a well-defined path and to achieve optimum
velocity at all times, the robot reduces the size of the zone to half the distance from one
overlapping programmed position to the other (see Figure 27). The same zone radius
is always used for inputs to or outputs from a programmed position, in order to obtain
symmetrical corner paths.

p1

p2 p3

p4
Sing Area\Wrist
interpolation

Sing Area\Wrist
interpolation

Linear
interpolation

Joint interpolation

Position zone Orientation zone
1773HAC16580-1 Revision: G

3 Motion and IO programming
3.2.3 Interpolation of corner paths

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Figure 27 Interpolation with overlapping position zones. The zones around p2 and p3 are larger
than half the distance from p2 to p3. Thus, the robot reduces the size of the zones to
make them equal to half the distance from p2 to p3, thereby generating symmetrical
corner paths within the zones.

Both position and orientation corner path zones can overlap. As soon as one of these
corner path zones overlap, that zone is reduced (see Figure 28).

Figure 28 Interpolation with overlapping orientation zones. The orientation zone at p2 is larger
than half the distance from p2 to p3 and is thus reduced to half the distance from p2
to p3. The position zones do not overlap and are consequently not reduced; the
orientation zone at p3 is not reduced either.

3.2.3.8 Planning time for fly-by points

Occasionally, if the next movement is not planned in time, programmed fly-by points
can give rise to a stop point. This may happen when:

- A number of logical instructions with long program execution times are

p1

p2

p3

p4

Programmed
 position zones

Corner zones as
calculated by the robot

Generated
path

p1

p2

p3

p4

Position zones

Generated path
Programmed
orientation zone

Generated
orientation zone

Orientation zone
3HAC16580-1 Revision: G178

3 Motion and IO programming
3.2.4 Independent axes

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
programmed between short movements.
- The points are very close together at high speeds.

If stop points are a problem then use concurrent program execution.

3.2.4 Independent axes

An independent axis is an axis moving independently of other axes in the robot system.
It is possible to change an axis to independent mode and later back to normal mode
again.

A special set of instructions handles the independent axes. Four different move
instructions specify the movement of the axis. For instance, the IndCMove instruction
starts the axis for continuous movement. The axis then keeps moving at a constant
speed (regardless of what the robot does) until a new independent-instruction is
executed.

To change back to normal mode a reset instruction, IndReset, is used. The reset
instruction can also set a new reference for the measurement system - a type of new
synchronization of the axis. Once the axis is changed back to normal mode it is
possible to run it as a normal axis.

3.2.4.1 Program execution

An axis is immediately change to independent mode when an Ind_Move instruction is
executed. This takes place even if the axis is being moved at the time, such as when a
previous point has been programmed as a fly-by point, or when simultaneous program
execution is used.

If a new Ind_Move instruction is executed before the last one is finished, the new
instruction immediately overrides the old one.

If a program execution is stopped when an independent axis is moving, that axis will
stop. When the program is restarted the independent axis starts automatically. No
active coordination between independent and other axes in normal mode takes place.

If a loss of voltage occurs when an axis is in independent mode, the program cannot be
restarted. An error message is then displayed, and the program must be started from the
beginning.

Note that a mechanical unit may not be deactivated when one of its axes is in
independent mode.
1793HAC16580-1 Revision: G

3 Motion and IO programming
3.2.4 Independent axes

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3.2.4.2 Stepwise execution

During stepwise execution, an independent axis is executed only when another
instruction is being executed. The movement of the axis will also be stepwise in line
with the execution of other instruments, see Figure 29.

Figure 29 Stepwise execution of independent axes.

3.2.4.3 Jogging

Axes in independent mode cannot be jogged. If an attempt is made to execute the axis
manually, the axis does not move and an error message is displayed. Execute an
IndReset instruction or move the program pointer to main, in order to leave the
independent mode.

3.2.4.4 Working range

The physical working range is the total movement of the axis.

The logical working range is the range used by RAPID instructions and read in the
jogging window.

After synchronization (updated revolution counter), the physical and logical working
range coincide. By using the IndReset instruction the logical working area can be
moved, see Figure 30.

IndAMove WaitTime 10

10 s

MoveL MoveL

Independent axis
reaches final position

Independent axis
speed

Normal axis speed
3HAC16580-1 Revision: G180

3 Motion and IO programming
3.2.4 Independent axes

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Figure 30 The logical working range can be moved, using the instruction IndReset.

The resolution of positions is decreased when moving away from logical position 0.
Low resolution together with stiff tuned controller can result in unacceptable torque,
noise and controller instability. Check the controller tuning and axis performance close
to the working range limit at installation. Also check if the position resolution and path
performance are acceptable.

3.2.4.5 Speed and acceleration

In manual mode with reduced speed, the speed is reduced to the same level as if the
axis was running as non-independent. Note that the IndSpeed\InSpeed function will not
be TRUE if the axis speed is reduced.

The VelSet instruction and speed correction in percentage via the production window,
are active for independent movement. Note that correction via the production window
inhibits TRUE value from the IndSpeed\InSpeed function.

In independent mode, the lowest value of acceleration and deceleration, specified in
the configuration file, is used both for acceleration and deceleration. This value can be
reduced by the ramp value in the instruction (1 - 100%). The AccSet instruction does
not affect axes in independent mode.

3.2.4.6 Robot axes

Only robot axis 6 can be used as an independent axis. Normally the IndReset
instruction is used only for this axis. However, the IndReset instruction can also be
used for axis 4 on IRB 2400 and 4400 models. If IndReset is used for robot axis 4, then
axis 6 must not be in the independent mode.

If axis 6 is used as an independent axis, singularity problems may occur because the
normal 6-axes coordinate transform function is still used. If a problem occurs, execute
the same program with axis 6 in normal mode. Modify the points or use SingArea\Wrist
or MoveJ instructions.

Logical working range
after synchronization

Logical working range
after IndReset

Physical working range

0

0

0

Logical working range
1813HAC16580-1 Revision: G

3 Motion and IO programming
3.2.5 Soft Servo

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
The axis 6 is also internally active in the path performance calculation. A result of this
is that an internal movement of axis 6 can reduce the speed of the other axes in the
system.

The independent working range for axis 6 is defined with axis 4 and 5 in home position.
If axis 4 or 5 is out of home position the working range for axis 6 is moved due to the
gear coupling. However, the position read from FlexPendant for axis 6 is compensated
with the positions of axis 4 and 5 via the gear coupling.

3.2.5 Soft Servo

In some applications there is a need for a servo, which acts like a mechanical spring.
This means that the force from the robot on the work object will increase as a function
of the distance between the programmed position (behind the work object) and the
contact position (robot tool - work object).

The relationship between the position deviation and the force, is defined by a
parameter called softness. The higher the softness parameter, the larger the position
deviation required to obtain the same force.

The softness parameter is set in the program and it is possible to change the softness
values anywhere in the program. Different softness values can be set for different joints
and it is also possible to mix joints having normal servo with joints having soft servo.

Activation and deactivation of soft servo as well as changing of softness values can be
made when the robot is moving. When this is done, a tuning will be made between the
different servo modes and between different softness values to achieve smooth
transitions. The tuning time can be set from the program with the parameter ramp. With
ramp = 1, the transitions will take 0.5 seconds, and in the general case the transition
time will be ramp x 0.5 in seconds.

Note that deactivation of soft servo should not be done when there is a force between
the robot and the work object.

With high softness values there is a risk that the servo position deviations may be so
big that the axes will move outside the working range of the robot.

3.2.6 Stop and restart

A movement can be stopped in three different ways:

1. For a normal stop the robot will stop on the path, which makes a restart easy.

2. For a stiff stop the robot will stop in a shorter time than for the normal stop, but the
deceleration path will not follow the programmed path. This stop method is, for
example, used for search stop when it is important to stop the motion as soon as
possible.
3HAC16580-1 Revision: G182

3 Motion and IO programming
3.2.7 Related information

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3. For a quick-stop the mechanical brakes are used to achieve a deceleration distance,
which is as short as specified for safety reasons. The path deviation will usually be
bigger for a quick-stop than for a stiff stop.

After a stop (any of the types above) a restart can always be made on the interrupted
path. If the robot has stopped outside the programmed path, the restart will begin with
a return to the position on the path, where the robot should have stopped.

A restart following a power failure is equivalent to a restart after a quick-stop. It should
be noted that the robot will always return to the path before the interrupted program
operation is restarted, even in cases when the power failure occurred while a logical
instruction was running. When restarting, all times are counted from the beginning; for
example, positioning on time or an interruption in the instruction WaitTime.

3.2.7 Related information

Described in:
Definition of speed Technical reference manual - RAPID Instructions,

functions and data types - speeddata
Definition of zones (corner paths) Technical reference manual - RAPID Instructions,

functions and data types - zonedata
Instruction for joint interpolation Technical reference manual - RAPID Instructions,

functions and data types - MoveJ
Instruction for linear interpolation Technical reference manual - RAPID Instructions,

functions and data types - MoveL
Instruction for circular interpolation Technical reference manual - RAPID Instructions,

functions and data types - MoveC
Instruction for modified interpolation Technical reference manual - RAPID Instructions,

functions and data typess - SingArea

Singularity Singularities on page 207

Concurrent program execution Synchronisation with logical instructions on page 185

CPU Optimization Technical reference manual - System parameters
1833HAC16580-1 Revision: G

3 Motion and IO programming
3.2.7 Related information

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3HAC16580-1 Revision: G184

3 Motion and IO programming
3.3 Synchronisation with logical instructions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3.3 Synchronisation with logical instructions

Instructions are normally executed sequentially in the program. Nevertheless, logical
instructions can also be executed at specific positions or during an ongoing movement.

A logical instruction is any instruction that does not generate a robot movement or an
external axis movement, e.g. an I/O instruction.

3.3.1 Sequential program execution at stop points

If a positioning instruction has been programmed as a stop point, the subsequent
instruction is not executed until the robot and the external axes have come to a
standstill, i.e. when the programmed position has been attained (see Figure 31).

Figure 31 A logical instruction after a stop point is not executed until the destination position
has been reached.

3.3.2 Sequential program execution at fly-by points

If a positioning instruction has been programmed as a fly-by point, the subsequent
logical instructions are executed some time before reaching the largest zone (for
position, orientation or external axes). See Figure 32 and Figure 33. These instructions
are then executed in order.

Figure 32 A logical instruction following a fly-by point is executed before reaching the largest zone.

p1

Execution of SetDO
MoveL p1, v1000, fine, tool1;
SetDO do1, on;
MoveL p2, v1000, z30, tool1;

Execution of SetDO

DT

Orientation zone

Position zone

p1

MoveL p1, v1000, z30, tool1;
SetDO do1, on;
MoveL p2, v1000, z30, tool1;
1853HAC16580-1 Revision: G

3 Motion and IO programming
3.3.3 Concurrent program execution

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.

Figure 33 A logical instruction following a fly-by point is executed before reaching the largest zone.

The time at which they are executed (DT) comprises the following time components:

- The time it takes for the robot to plan the next move: approx. 0.1 seconds.
- The robot delay (servo lag) in seconds: 0 - 1.0 seconds depending on the

velocity and the actual deceleration performance of the robot.

3.3.3 Concurrent program execution

Concurrent program execution can be programmed using the argument \Conc in the
positioning instruction. This argument is used to:

- Execute one or more logical instructions at the same time as the robot moves in order
to reduce the cycle time (e.g. used when communicating via serial channels).

DT

Execution
of SetDO

p1
p2

MoveL p1, v1000, z30, tool1;

SetDO do1, on;
MoveL p3, v1000, z30, tool1;

MoveL p2, v1000, z30, tool1;
Orientation zone

Position zone
3HAC16580-1 Revision: G186

3 Motion and IO programming
3.3.3 Concurrent program execution

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
When a positioning instruction with the argument \Conc is executed, the following
logical instructions are also executed (in sequence):

- If the robot is not moving, or if the previous positioning instruction ended with a
stop point, the logical instructions are executed as soon as the current positioning
instruction starts (at the same time as the movement). See Figure 34.

- If the previous positioning instruction ends at a fly-by point, the logical
instructions are executed at a given time (DT) before reaching the largest zone
(for position, orientation or external axes). See Figure 35.

Figure 34 In the case of concurrent program execution after a stop point, a positioning
instruction and subsequent logical instructions are started at the same time.

Execution of SetDO

p1
p2

MoveL p1, v1000, fine, tool1;

SetDO do1, on;
MoveL p3, v1000, z30, tool1;

MoveL \Conc, p2, v1000, z30, tool1;
1873HAC16580-1 Revision: G

3 Motion and IO programming
3.3.3 Concurrent program execution

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Figure 35 In the case of concurrent program execution after a fly-by point, the logical
instructions start executing before the positioning instructions with the argument
\Conc are started.

Instructions which indirectly affect movements, such as ConfL and SingArea, are
executed in the same way as other logical instructions. They do not, however, affect
the movements ordered by previous positioning instructions.

If several positioning instructions with the argument \Conc and several logical
instructions in a long sequence are mixed, the following applies:

- Logical instructions are executed directly, in the order they were programmed.
This takes place at the same time as the movement (see Figure 36) which means
that logical instructions are executed at an earlier stage on the path than they
were programmed.

DT

Execution
of SetDO

Largest zone

p1
p2

MoveL p1, v1000, z30, tool1;

SetDO do1, on;
MoveL p3, v1000, z30, tool1;

MoveL \Conc, p2, v1000, z30, tool1;
3HAC16580-1 Revision: G188

3 Motion and IO programming
3.3.4 Path synchronisation

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Figure 36 If several positioning instructions with the argument \Conc are programmed in
sequence, all connected logical instructions are executed at the same time as the first
position is executed.

During concurrent program execution, the following instructions are programmed to
end the sequence and subsequently re-synchronise positioning instructions and logical
instructions:

- a positioning instruction to a stop point without the argument \Conc,
- the instruction WaitTime or WaitUntil with the argument \Inpos.

3.3.4 Path synchronisation

In order to synchronise process equipment (for applications such as gluing, painting
and arc welding) with the robot movements, different types of path synchronisation
signals can be generated.

With a so-called positions event, a trig signal will be generated when the robot passes
a predefined position on the path. With a time event, a signal will be generated in a
predefined time before the robot stops at a stop position. Moreover, the control system
also handles weave events, which generate pulses at predefined phase angles of a
weave motion.

DT

Execution of
SetDO and SetAO

Largest zone

p1
p2

MoveL p1, v1000, z30, tool1;

SetDO do1, on;
MoveL \Conc, p3, v1000, z30, tool1;

MoveL \Conc, p2, v1000, z30, tool1;

SetAO ao2, 5;
1893HAC16580-1 Revision: G

3 Motion and IO programming
3.3.5 Related information

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
All the position synchronised signals can be achieved both before (look ahead time)
and after (delay time) the time that the robot passes the predefined position. The
position is defined by a programmed position and can be tuned as a path distance
before the programmed position.

Typical repeat accuracy for a set of digital outputs on the path is +/- 2ms.

In the event of a power failure and restart in a Trigg instruction, all trigg events will be
generated once again on the remaining movement path for the trigg instruction.

3.3.5 Related information

Described in:
Positioning instructions Motion on page 67

Definition of zone size Technical reference manual - RAPID Instructions,
functions and data types - zonedata
3HAC16580-1 Revision: G190

3 Motion and IO programming
3.4 Robot configuration

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3.4 Robot configuration

3.4.1 Different types of robot configurations

It is usually possible to attain the same robot tool position and orientation in several different
ways, using different sets of axis angles. We call these different robot configurations.

If, for example, a position is located approximately in the middle of a work cell, some robots
can get to that position from above and below when using different axis 1 directions (see
Figure 37).

Figure 37 Two different arm configurations used to attain the same position and orientation. The
configuration on the right side is attained by rotating the arm backward. Axis 1 is
rotated 180 degrees.

Some robots may also get to that position from above and below while using the same axis
1 direction. This is possible for robot types with extended axis 3 working range (see Figure
38).
1913HAC16580-1 Revision: G

3 Motion and IO programming
3.4.1 Different types of robot configurations

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Figure 38 IRB140 with two different arm configurations used to attain same position and
orientation. The Axis 1 angle is the same for both configurations.The configuration on the right
side is attained by rotating the lower arm forward and the upper arm backward.

This can also be achieved by turning the front part of the robot upper arm (axis 4) upside
down while rotating axes 5 and 6 to the desired position and orientation (see Figure 39).

Figure 39 Two different wrist configurations used to attain the same position and orientation.
In the configuration in which the front part of the upper arm points upwards (lower),
axis 4 has been rotated 180 degrees, axis 5 through 180 degrees and axis 6 through
180 degrees in order to attain the configuration in which the front part of the upper
arm points downwards (upper).

ABB

A
B

B

axis 6

axis 5

axis 4
3HAC16580-1 Revision: G192

3 Motion and IO programming
3.4.2 Specifying robot configuration

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3.4.2 Specifying robot configuration

When programming a robot position, also a robot configuration is specified with
confdata cf1, cf4, cf6, cfx.

The way of specifying robot configuration differs for different kinds of robot types (see
Technical reference manual - RAPID Instructions, functions and data types - confdata,
for a complete description). However, for most robot types this includes defining the
appropriate quarter revolutions of axes 1, 4 and 6. For example, if axis 1 is between 0
and 90 degrees, then cf1=0, see figure below.

Figure 40 Quarter revolution for a positive joint angle: .

Figure 41 Quarter revolution for a negative joint angle: .

3.4.3 Configuration check

Usually you want the robot to attain the same configuration during program execution as
the one you programmed. To do this, you can make the robot check the configuration
by using ConfL\On or ConfJ\On and, if the correct configuration is not attained,
program execution will stop. If the configuration is not checked, the robot may
unexpectedly start to move its arms and wrists which, in turn, may cause it to collide
with peripheral equipment.

1

2 3

0

int joint angle
π 2⁄

--------------–⎝ ⎠
⎛ ⎞

-3

-2 -1

-4

int joint angle
π 2⁄

--------------– 1–⎝ ⎠
⎛ ⎞
1933HAC16580-1 Revision: G

3 Motion and IO programming
3.4.3 Configuration check

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
The configuration check involves comparing the configuration of the programmed
position with that of the robot.

During linear movement, the robot always moves to the closest possible configuration.
If, however, the configuration check is active with ConfL\On, program execution stops
as soon as any one of the axes deviates more than the specified number of degrees.

During axis-by-axis or modified linear movement using a configuration check with
ConfL\On or ConfJ\On, the robot always moves to the programmed axis configuration.
If the programmed position and orientation can not be achieved, program execution
stops before starting the movement. If the configuration check is not active, the robot
moves to the specified position and orientation with the closest configuration.

When the execution of a programmed position is stopped because of a configuration
error, it may often be caused by some of the following reasons:

• The position is programmed off-line with a faulty configuration.
• The robot tool has been changed causing the robot to take another configuration than

was programmed.
• The position is subject to an active frame operation (displacement, user, object, base).

The correct configuration in the destination position can be found by positioning the
robot near it and reading the configuration on the FlexPendant.

If the configuration parameters change because of active frame operation, the
configuration check can be deactivated.

3.4.3.1 Detailed information of ConfL and ConfJ

MoveJ with ConfJ:
\Off:
- The robot is moved to the programmed position, with a configuration (angle) for axes
1, 4 and 6, which is the closest to the configuration (angle) of the start position. This
means that the configuration in the confdata is not used.

\On:
- The robot is moved to the programmed position, with a configuration equal or close
to what is programmed in the confdata.
- If a program displacement is active, the arm configuration may vary within a 180
degrees area, see picture next page.
- If the calculated position is outside the 180 deg. area, the robot will stop with an error
message.
3HAC16580-1 Revision: G194

3 Motion and IO programming
3.4.4 Related information

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Arm configuration control
When executing a MoveJ with ConfJ\On, this area will be permitted if quadrant 0 is
programmed (e.g. cf1=0):

MoveL with ConfL:
\Off:
- In this case the robot, for the end position, will choose the configuration, which is
closest to the configuration of the start position. So, the robot will move along a stright
line to the closest confguration, independent of what is programmed in confdata.

\On:
- In this case there will be a supervision like following: First the endposition is
calculated in joints, using the programmed confdata to determine the solution. Then the
joint values for axes 1, 4 and 6 are compared to the corresponding for the start position.
If the difference is less than 180 deg. and if axis 5 has not changed the sign, then the
movement will be permitted. In other cases the robot will stop with error message in
the start position. If this test is OK, then the movement is performed and when in the
endposition the system will again check the configuration with the programmed, and
if wrong stop the robot.

3.4.4 Related information

Described in:
Definition of robot configuration Technical reference manual - RAPID Instructions,

functions and data types - confdata
Activating/deactivating the configuration check Motion settings on page 61

x

y
-1 0

1-2

x

y
-1 0

1-2
1953HAC16580-1 Revision: G

3 Motion and IO programming
3.4.4 Related information

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3HAC16580-1 Revision: G196

3 Motion and IO programming
3.5 Robot kinematic models

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3.5 Robot kinematic models

3.5.1 Robot kinematics

The position and orientation of a robot is determined from the kinematic model of its
mechanical structure. The specific mechanical unit models must be defined for each
installation. For standard ABB master and external robots, these models are predefined
in the controller.

3.5.1.1 Master robot

The kinematic model of the master robot models the position and orientation of the tool
of the robot relative to its base as function of the robot joint angles.

The kinematic parameters specifying the arm-lengths, offsets and joint attitudes, are
predefined in the configuration file for each robot type.

Figure 42 Kinematic structure of an IRB1400 robot

A calibration procedure supports the definition of the base frame of the master robot
relative to the world frame.

joint 1

joint 2

joint 3

joint 5

height_of_foot

offset_of_joint_2

length_of_lower_arm

offset_of_joint_3

length_of_upper_arm length_of_wrist

joint 4 joint 6

X

Z

Z6

X6
1973HAC16580-1 Revision: G

3 Motion and IO programming
3.5.1 Robot kinematics

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Figure 43 Base frame of master robot

3.5.1.2 External robot

Coordination with an external robot also requires a kinematic model for the external
robot. A number of predefined classes of 2 and 3 dimensional mechanical structures
are supported.

Figure 44 Kinematic structure of an ORBIT 160B robot using predefined model

Calibration procedures to define the base frame relative to the world frame are supplied
for each class of structures.

Z

X

Y

Master robot base frame

World frame

Z6

X6

height_of_foot

X0

Z0

offset_of_joint1_x

length_of_lower_arm
offset_of_upper_arm

turn_table

attitude_of_joint1

attitude_of_joint

X2

Z2

joint 1

joint 2
3HAC16580-1 Revision: G198

3 Motion and IO programming
3.5.2 General kinematics

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Figure 45 Base frame of an ORBIT_160B robot

Figure 46 Reference points on turntable for base frame calibration of an ORBIT_160B robot in
the home position using predefined model

3.5.2 General kinematics

Mechanical structures not supported by the predefined structures may be modelled by
using a general kinematic model. This is possible for external robots.

Modelling is based on the Denavit-Hartenberg convention according to Introduction to
Robotics, Mechanics & Control, John J. Craigh (Addison-Wesley 1986)

Body A

Body B

X2

Z2

Body C

X0

Z0

World frame

External robot base frame

X0

Y0

Y2

x1 x2

y1

X2
1993HAC16580-1 Revision: G

3 Motion and IO programming
3.5.2 General kinematics

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Figure 47 Kinematic structure of an ORBIT 160B robot using general kinematics model

A calibration procedure supports the definition of the base frame of the external robot
relative to the world frame.

Figure 48 Base frame of an ORBIT_160B robot using general kinematics model

turn_table

Z2

X0

Z0

d2

alfa2

Y2

d1

a1 = 0
a2 = 0
alfa1 = 0

Z2

World frame

X0

Z0

External robot base frame

Y2
3HAC16580-1 Revision: G200

3 Motion and IO programming
3.5.3 Related information

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Figure 49 Reference points on turntable for base frame calibration of an ORBIT_160B robot in
the home position (joints = 0 degrees)

3.5.3 Related information

Described in:
Definition of general kinematics of an external
robot

Technical reference manual -System parameters

X0

Y0

x1

x2 Y2

X2

y1
2013HAC16580-1 Revision: G

3 Motion and IO programming
3.5.3 Related information

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3HAC16580-1 Revision: G202

3 Motion and IO programming
3.6 Motion supervision/collision detection

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3.6 Motion supervision/collision detection

Motion supervision is the name of a collection of functions for high sensitivity, model-
based supervision of the robot’s movements. Motion supervision includes functionality
for the detection of collision, jamming, and incorrect load definition. This functionality
is called Collision Detection.

3.6.1 Introduction

The collision detection may trig if the data for the loads mounted on the robot are not
correct. This includes load data for tools, payloads and arm loads. If the tool data or
payload data are not known, the load identification functionality can be used to define
it. Arm load data cannot be identified.

When the collision detection is triggered, the motor torques are reversed and the
mechanical brakes applied in order to stop the robot. The robot then backs up a short
distance along the path in order to remove any residual forces which may be present if
a collision or jam occurred. After this, the robot stops again and remains in the motors
on state. A typical collision is illustrated in the figure below.

The motion supervision is only active when at least one axis (including external axes)
is in motion. When all axes are standing still, the function is deactivated. This is to
avoid unnecessary trigging due to external process forces.

3.6.2 Tuning of collision detection levels

The collision detection uses a variable supervision level. At low speeds it is more sen-
sitive than during high speeds. For this reason, no tuning of the function should be
required by the user during normal operating conditions. However, it is possible to turn
the function on and off and to tune the supervision levels. Separate tuning parameters
are available for jogging and program execution. The different tuning parameters are
described in more detail in the Technical reference manual - System parameters under
Manipulator.

There is a RAPID instruction called MotionSup which turns the function on and off and
modifies the supervision level. This is useful in applications where external process
forces act on the robot in certain parts of the cycle. The MotionSup instruction is
described in more detail in the Technical reference manual - RAPID Instructions,
Functions and data types.

The tune values are set in percent of the basic tuning where 100% corresponds to the
basic values. Increasing the percentage gives a less sensitive system and decreasing
gives the opposite effect. It is important to note that if tune values are set in the system
parameters and in the RAPID instruction both values are taken into consideration.
Example: If the tune value in the system parameters is set to 150% and the tune value
is set to 200% in the RAPID instruction the resulting tune level will be 300%.
2033HAC16580-1 Revision: G

3 Motion and IO programming
3.6.2 Tuning of collision detection levels

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
collision
detected

time of
collision

robot
stopped residual forces

removed

motor
speed

motor
torque

time

time

torque
reversed

speed
reversed

Figure: Typical collision

Phase 1 - The motor torque
is reversed to stop the robot.

Phase 2 - The motor speed is
reversed to remove residual
forces on the tool and robot.
3HAC16580-1 Revision: G204

3 Motion and IO programming
3.6.3 Motion supervision dialogue box

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
There is a maximum level to which the total collision detection tune level can be
changed. This value is set by default to 300% but it can be modified via the system
parameter motion_sup_max_level which is only available if the system is installed in
Service mode.

3.6.3 Motion supervision dialogue box

Select motion supervision under the special menu in the jogging window. This displays
a dialogue box which allows the motion supervision to be turned on and off. This will
only affect the robot during jogging. If the motion supervision is turned off in the
dialogue box and a program is executed, the collision detection can still be active
during the running of the program. If the program is then stopped and the robot jogged,
the status flag in the dialogue window is set to on again. This is a safety measure to
avoid turning the function off by accident.

3.6.4 Digital outputs

The digital output MotSupOn is high when the collision detection function is active
and low when it is not active. Note that a change in the state of the function takes effect
when a motion starts. Thus, if the collision detection is active and the robot is moving,
MotSupOn is high. If the robot is stopped and the function turned off, MotSupOn is
still high. When the robot starts to move, MotSupOn switches to low.

The digital output MotSupTrigg goes high when the collision detection triggers. It
stays high until the error code is acknowledged, either from the FlexPendant or through
the digital input AckErrDialog.

The digital outputs are described in more detail in the Operating manual - IRC5 with
FlexPendant under IO Signals.

3.6.5 Limitations

The motion supervision is only available for the robot axes. It is not available for track
motions, orbit stations, or any other external manipulators.

The collision detection is deactivated when at least one axis is run in independent joint
mode. This is also the case even when it is an external axis which is run as an
independent joint.
2053HAC16580-1 Revision: G

3 Motion and IO programming
3.6.6 Related information

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
The collision detection may trigger when the robot is used in soft servo mode.
Therefore, it is advisable to turn the collision detection off when the robot is in soft
servo mode.

If the RAPID instruction MotionSup is used to turn off the collision detection, this will
only take effect once the robot starts to move. As a result, the digital output MotSupOn
may temporarily be high at program start before the robot starts to move.

The distance the robot backs up after a collision is proportional to the speed of the
motion before the collision. If repeated low speed collisions occur, the robot may not
back up sufficiently to relieve the stress of the collision. As a result, it may not be
possible to jog the robot without the supervision triggering. In this case use the jog
menu to turn off the collision detection temporarily and jog the robot away from the
obstacle.

In the event of a stiff collision during program execution, it may take a few seconds
before the robot starts to back up.

If the robot is mounted on a track the collision detection should be set to off when the
track is moving. If it is not turned off the collision detection may trigger when the track
moves, even if there is no collision.

3.6.6 Related information

Described in:
RAPID instruction MotionSup Motion on page 67

System parameters for tuning Technical reference manual - System Parameters -
Manipulator

Motion supervision IO Signals Technical reference manual - System Parameters -
IO Signals

Load Identification Motion and I/O Principles
3HAC16580-1 Revision: G206

3 Motion and IO programming
3.7 Singularities

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3.7 Singularities

Some positions in the robot working space can be attained using an infinite number of
robot configurations to position and orient the tool. These positions, known as singular
points (singularities), constitute a problem when calculating the robot arm angles based
on the position and orientation of the tool.

Generally speaking, a robot has two types of singularities: arm singularities and wrist
singularities. Arm singularities are all configurations where the wrist centre (the
intersection of axes 4, 5, and 6) ends up directly above axis 1 (see Figure 50).
Wrist singularities are configurations where axis 4 and axis 6 are on the same line, i.e.
axis 5 has an angle equal to 0 (see Figure 51).

Figure 50 Arm singularity occurs where the wrist centre and axis 1 intersect.

Figure 51 Wrist singularity occurs when axis 5 is at 0 degrees.

Xbase

Rotation centre of axis 1

Singularity at the intersection of the
wrist centre and axis 1

Zbase

Axis 6 parallel
to axis 4

Axis 5 with an angle of 0 degrees
2073HAC16580-1 Revision: G

3 Motion and IO programming
3.7.1 Singularity points of IRB140

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3.7.1 Singularity points of IRB140

The robot has the wrist singularity and the arm singularity. There is also a third kind
of singularity. This singularity occurs at robot positions where the wrist centre and
the rotation centres of axes 2 and 3 are all in a straight line (see figure below).

Figure 52 The additional singular point for IRB140.

3.7.2 Program execution through singularities

During joint interpolation, problems do not occur when the robot passes singular
points.

When executing a linear or circular path close to a singularity, the velocities in some
joints (1 and 6/4 and 6) may be very high. In order not to exceed the maximum joint
velocities, the linear path velocity is reduced.

The high joint velocities may be reduced by using the mode (Sing Area\Wrist) when
the wrist axes are interpolated in joint angles, while still maintaining the linear path of
the robot tool. An orientation error compared to the full linear interpolation is however
introduced.

Note that the robot configuration changes dramatically when the robot passes close to
a singularity with linear or circular interpolation. In order to avoid the reconfiguration,
the first position on the other side of the singularity should be programmed with an
orientation that makes the reconfiguration unnecessary.

Also, it should be noted that the robot must not be in its singularity when only external
joints are moved. This may cause robot joints to make unnecessary movements.

ABB
3HAC16580-1 Revision: G208

3 Motion and IO programming
3.7.3 Jogging through singularities

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3.7.3 Jogging through singularities

During joint interpolation, problems do not occur when the robot passes singular points

During linear interpolation, the robot can pass singular points but at a decreased speed.

3.7.4 Related information

Described in:
Controlling how the robot is to act on execution
near singular points

Technical reference manual - RAPID Instructions,
functions and data types - SingArea
2093HAC16580-1 Revision: G

3 Motion and IO programming
3.7.4 Related information

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3HAC16580-1 Revision: G210

3 Motion and IO programming
3.8 Optimized acceleration limitation

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3.8 Optimized acceleration limitation

The acceleration and speed of the robot is continuously controlled so that the defined
limits are not exceeded.

The limits are defined by the user program (e.g. programmed speed or AccSet) or
defined by the system itself (e.g. maximum torque in gearbox or motor, maximum
torque or force in robot structure).

As long as the load data (mass, centre of gravity, and inertia) is within the limits on the
load diagram and correctly entered into the tool data, then no user defined acceleration
limits are needed and the service life of the robot is automatically ensured.

If the load data lies outside the limits on the load diagram, then special restrictions may
be necessary, i.e. AccSet or lower speed, as specified on request from ABB.

TCP acceleration and speed are controlled by the path planner with the help of a
complete dynamic model of the robot arms, including the user defined loads.

The TCP acceleration and speed depends on the position, speed, and acceleration of all
the axes at any instant in time and thus the actual acceleration varies continuously. In
this way the optimal cycle time is obtained, i.e. one or more of the limits is at its
maximum value at every instant. This means that the robot motors and structure are
utilised to their maximum capability at all times.
2113HAC16580-1 Revision: G

3 Motion and IO programming
3.8 Optimized acceleration limitation

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3HAC16580-1 Revision: G212

3 Motion and IO programming
3.9 World Zones

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3.9 World Zones

3.9.1 Using global zones

When using this function, the robot stops or an output is automatically set if the robot
is inside a special user-defined area. Here are some examples of applications:

- When two robots share a part of their respective work areas. The possibility of
the two robots colliding can be safely eliminated by the supervision of these
signals.

- When external equipment is located inside the robot’s work area. A forbidden
work area can be created to prevent the robot colliding with this equipment.

- Indication that the robot is at a position where it is permissible to start program
execution from a PLC.

3.9.2 Using World Zones

To indicate that the tool centre point is in a specific part of the working area.
To limit the working area of the robot in order to avoid collision with the tool.
To make a common work area for two robots available to only one robot at a time.

3.9.3 Definition of World Zones in the world coordinate system

World Zones are to be defined in the world coordinate system.
The sides of the Boxes are parallel to the coordinate axes and Cylinder axis is parallel
to the Z axis of the world coordinate system.
2133HAC16580-1 Revision: G

3 Motion and IO programming
3.9.4 Supervision of the robot TCP

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
A World Zone can be defined to be inside or outside the shape of the Box, Sphere or
the Cylinder.

World Zone can also be defined in joints. The zone is to be defined between (inside) or
not between (outside) two joint values for any robot or external axes.

3.9.4 Supervision of the robot TCP

The movement of the tool centre
point is supervised and not any other
points on the robot.

The TCP is always supervised
irrespective of the mode of operation,
for example, program execution and
jogging.

3.9.5 Stationary TCPs

If the robot is holding a work object and working on a stationary tool, a stationary TCP
is used. If that tool is active, the tool will not move and if it is inside a World Zone then
it is always inside.

Base coordinate system robot

x

y

z

World coordinate system

Z

X

Y

Height

Sphere

Radius

Radius

Cylinder

Box

TCP

TCP

Not supervised
3HAC16580-1 Revision: G214

3 Motion and IO programming
3.9.6 Actions

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3.9.6 Actions

3.9.6.1 Set a digital output when the tcp is inside a World Zone.

This action sets a digital output when the tcp is inside a World Zone. It is useful to indicate
that the robot has stopped in a specified area.

3.9.6.2 Set a digital output before the tcp reaches a World Zone.

This action sets a digital output before the tcp reaches a World Zone. It can be used to
stop the robot just inside a World Zone

3.9.6.3 Stop the robot before the tcp reaches a World Zone.

A World Zone can be defined to be outside the work area. The robot will then stop with
the Tool Centre Point just outside the World Zone, when heading towards the Zone

When the robot has been moved into a World Zone defined as an outside work area,
for example, by releasing the brakes and manually pushing, then the only ways to get
out of the Zone are by jogging or by manual pushing with the brakes released.

Status of digital output

Movement of TCP

Time between checks
against World Zones

World Zone

Stop Time for Robot

Status of digital output

World Zone

Movement of TCP

Time between checks
against World Zones

Stop Time for Robot

Movement of TCP
2153HAC16580-1 Revision: G

3 Motion and IO programming
3.9.7 Minimum size of World Zones.

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3.9.7 Minimum size of World Zones.

Supervision of the movement of the tool centre points is done at discrete points with
a time interval between them that depends on the path resolution.
It is up to the user to make the zones large enough so the robot cannot move right
through a zone without being checked inside the Zone.

If the same digital output is used for more than one World Zone, the distance between
the Zones must exceed the minimum size, as shown in the table above, to avoid an
incorrect status for the output.

It is possible that the robot can pass right
through a corner of a zone without it being
noticed, if the time that the robot is inside the
zone is too short. Therefore, make the size of
the zone larger than the dangerous area.

If World Zones are used in combination soft servo, the zone size must be additional
increased to compensate for the lag from soft servo. The soft servo lag is the distance
between the TCP of the robot and supervision of world zone at interpolation time. The
soft servo lag will be increased with higher softness defined with the instruction
SoftAct.

3.9.8 Maximum number of World Zones

A maximum of 20 World Zones can be defined at the same time.

Min. size of zone

1000 mm/s 2000 mm/s 4000 mm/s

1

2

3

for used path_resolution and max. speed

25 mm

50 mm

75 mm

50 mm

100 mm

150 mm

100 mm

200 mm

300 mm

Resol.

Speed

Time between checks
against World Zones
3HAC16580-1 Revision: G216

3 Motion and IO programming
3.9.9 Power failure, restart, and run on

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3.9.9 Power failure, restart, and run on

Stationary World Zones will be deleted at power off and must be reinserted at power
on by an event routine connected to the event POWER ON.

Temporary World Zones will survive a power failure but will be erased when a new
program is loaded or when a program is started from the main program.

The digital outputs for the World Zones will be updated first at Motors on.

3.9.10 Related information

Technical reference manual - RAPID Instructions, Functions and Data types

Motion and I/O Principles: Coordinate Systems

Data Types:

wztemporary

wzstationary

shapedata

Instructions: WZBoxDef

WZSphDef

WZCylDef

WZHomeJointDef

WZLimJointDef

WZLimSup

WZDOSet

WZDisable

WZEnable

WZFree
2173HAC16580-1 Revision: G

3 Motion and IO programming
3.9.10 Related information

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3HAC16580-1 Revision: G218

3 Motion and IO programming
3.10 I/O principles

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3.10 I/O principles

The robot generally has one or more I/O boards. Each of the boards has several digital
and/or analog channels which must be connected to logical signals before they can be
used. This is carried out in the system parameters and has usually already been done
using standard names before the robot is delivered. Logical names must always be used
during programming.

A physical channel can be connected to several logical names, but can also have no
logical connections (see Figure 53).

Figure 53 To be able to use an I/O board, its channels must be given logical names. In the above
example, the physical output 2 is connected to two different logical names. IN16, on
the other hand, has no logical name and thus cannot be used.

3.10.1 Signal characteristics

The characteristics of a signal are depend on the physical channel used as well as how
the channel is defined in the system parameters. The physical channel determines time
delays and voltage levels (see the Product Specification). The characteristics, filter
times and scaling between programmed and physical values, are defined in the system
parameters.

When the power supply to the robot is switched on, all signals are set to zero. They are
not, however, affected by emergency stops or similar events.

I/O board

IN1
IN2

IN16

.

.

.

.

OUT1
OUT2

OUT16

.

.

.

.

Physical channel Logical signal

do1
feeder

gripper
do2
feeder2

do16
2193HAC16580-1 Revision: G

3 Motion and IO programming
3.10.2 Signals connected to interrupt

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
An output can be set to one or zero from within the program. This can also be done using
a delay or in the form of a pulse. If a pulse or a delayed change is ordered for an output,
program execution continues. The change is then carried out without affecting the rest of
the program execution. If, on the other hand, a new change is ordered for the same output
before the given time elapses, the first change is not carried out (see Figure 54).

Figure 54 The instruction SetDO is not carried out at all because a new command is given before
the time delay has elapsed.

3.10.2 Signals connected to interrupt

RAPID interrupt functions can be connected to digital signal changes. The function
can be called on a raising or falling edge of the signal. However, if the digital signal
changes very quickly, the interrupt can be missed.

Ex:

If a function is connected to a signal called do1 and you make a program like:
SetDO do1,1;
SetDO do1,0;
The signal will first go to High and then Low in a few milliseconds. In this case you
may loose the interrupt. To be sure that you will get the interrupt, make sure that the
output is set before resetting it.

Ex:
SetDO do1,1;
WaitDO do1 ,1;
SetDO do1,0;
In this way you will never loose any interrupt.

SetDO \SDelay:=1, do1;
WaitTime 0.5;
PulseDO do1;

Signal value

Time
0 0.5 1

1

3HAC16580-1 Revision: G220

3 Motion and IO programming
3.10.3 System signals

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3.10.3 System signals

Logical signals can be interconnected by means of special system functions. If, for
example, an input is connected to the system function Start, a program start is
automatically generated as soon as this input is enabled. These system functions are
generally only enabled in automatic mode.

3.10.4 Cross connections

Digital signals can be interconnected in such a way that they automatically affect one
another:

- An output signal can be connected to one or more input or output signals.
- An input signal can be connected to one or more input or output signals.
- If the same signal is used in several cross connections, the value of that signal

is the same as the value that was last enabled (changed).
- Cross connections can be interlinked, in other words, one cross connection can

affect another. They must not, however, be connected in such a way so as to
form a ”vicious circle”, e.g. cross-connecting di1 to di2 whilst di2 is cross-
connected to di1.

- If there is a cross connection on an input signal, the corresponding physical
connection is automatically disabled. Any changes to that physical channel will
thus not be detected.

- Pulses or delays are not transmitted over cross connections.
- Logical conditions can be defined using NOT, AND and OR (Option:

Advanced functions).

Examples:

- di2=di1
- di3=di2
- do4=di2

If di1 changes, di2, di3 and do4 will be changed to the corresponding value.

- do8=do7
- do8=di5

If do7 is set to 1, do8 will also be set to 1. If di5 is then set to 0, do8 will also be
changed (in spite of the fact that do7 is still 1).

- do5=di6 and do1

Do5 is set to 1 if both di6 and do1 is set to 1.
2213HAC16580-1 Revision: G

3 Motion and IO programming
3.10.5 Limitations

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
3.10.5 Limitations

A maximum of 10 signals can be pulsed at the same time and a maximum of 20 signals
can be delayed at the same time.

3.10.6 Related information

Described in:
Definition of I/O boards and signals Technical reference manual - System parameters

Instructions for handling I/O Input and output signals on page 77

Manual manipulation of I/O Operating manual - IRC5 with FlexPendant - Inputs
and Outputs
3HAC16580-1 Revision: G222

4 Glossary
©

 C
op

yr
ig

ht
 2

00
4-

20
08

 A
B

B
. A

ll
rig

ht
s r

es
er

ve
d.
4 Glossary

Argument The parts of an instruction that can be changed, i.e. everything except the
name of the instruction.

Automatic mode The applicable mode when the operating mode selector is set to

.

Component One part of a record.

Configuration The position of the robot axes at a particular location.

Constant Data that can only be changed manually.

Corner path The path generated when passing a fly-by point.

Declaration The part of a routine or data that defines its properties.

Dialog/Dialog box Any dialog boxes appearing on the display of the FlexPendant must always
be terminated (usually by pressing OK or Cancel) before they can be
exited.

Error handler A separate part of a routine where an error can be taken care of. Normal
execution can then be restarted automatically.

Expression A sequence of data and associated operands; e.g. reg1+5 or reg1>5.

Fly-by point A point which the robot only passes in the vicinity of – without stopping. The
distance to that point depends on the size of the programmed zone.

Function A routine that returns a value.

Group of signals A number of digital signals that are grouped together and handled as one
signal.

Interrupt An event that temporarily interrupts program execution and executes a trap
routine.

I/O Electrical inputs and outputs.

Main routine The routine that usually starts when the Start key is pressed.

Manual mode The applicable mode when the operating mode switch is set to

.

Mechanical unit A group of external axes.

Module A group of routines and data, i.e. a part of the program.

Motors On/Off The state of the robot, i.e. whether or not the power supply to the motors is
switched on.

Operator’s panel The panel located on the front of the control system.

Orientation The direction of an end effector, for example.

Parameter The input data of a routine, sent with the routine call. It corresponds to the
argument of an instruction.

Persistent A variable, the value of which is persistent.

Procedure A routine which, when called, can independently form an instruction.

Program The set of instructions and data which define the task of the robot.
Programs do not, however, contain system modules.

Program data Data that can be accessed in a complete module or in the complete
program.
2233HAC16580-1 Revision: G

4 Glossary

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.
Program module A module included in the robot’s program and which is transferred when
copying the program to a diskette, for example.

Record A compound data type.

Routine A subprogram.

Routine data Local data that can only be used in a routine.

Start point The instruction that will be executed first when starting program execution.

Stop point A point at which the robot stops before it continues on to the next point.

System module A module that is always present in the program memory. When a new
program is read, the system modules remain in the program memory.

System parameters The settings which define the robot equipment and properties; configura-
tion data in other words.

Tool Centre Point (TCP) The point, generally at the tip of a tool, that moves along the programmed
path at the programmed velocity.

Trap routine The routine that defines what is to be done when a specific interrupt
occurs.

Variable Data that can be changed from within a program, but which loses its value
(returns to its initial value) when a program is started from the beginning.

Window The robot is programmed and operated by means of a number of different
windows, such as the Program window and the Service window. A window
can always be exited by choosing another window.

Zone The spherical space that surrounds a fly-by point. As soon as the robot
enters this zone, it starts to move to the next position.

Argument The parts of an instruction that can be changed, i.e. everything except the
name of the instruction.
3HAC16580-1 Revision: G224

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.

Index
A

aggregate 37
alias data type 38
AND 46
argument

conditional 49
arithmetic expression 45
array 40, 41
assigning a value to data 57
axis configuration 191

B

backward execution 133
backward handler 31, 125, 133
base coordinate system 159

C

circular movement 171
comment 19, 57
communication 109
communication instructions 81
component of a record 37
concurrent execution 186, 205
conditional argument 49
CONST 41
constant 39
coordinate system 159, 197
coordinated external axes 163
corner path 173
cross connections 221

D

data 39
used in expression 47

data type 37
declaration

constant 41
module 24
persistent 41
routine 31
variable 40

displacement frame 162
DIV 45

E

equal data type 38

ERRNO 97
error handler 97
error number 93
Error Recovery 99
expression 45
external axes

coordinated 163

F

file header 20
file instructions 81
function 29
function call 48

G

global
data 39
routine 29

I

I/O principles 219
I/O synchronisation 185
identifier 17
input instructions 77
interpolation 169
interrupt 87

J

joint movement 169

L

linear movement 170
local

data 39
routine 29

logical expression 46
logical value 18

M

main routine 23
mathematical instructions 105, 119
MOD 45
modified linear interpolation 172
module 23

declaration 24
motion instructions 68
2253HAC16580-1 Revision: G

©
 C

op
yr

ig
ht

 2
00

4-
20

08
 A

B
B

. A
ll

rig
ht

s r
es

er
ve

d.

Index

motion settings instructions 61
mulittasking 125
Multitasking 121

N

non value data type 37
NOT 46
numeric value 18

O

object coordinate system 161
operator

priority 49
optional parameter 30
OR 46
output instructions 77

P

parameter 30
path synchronization 189
PERS 41
persistent 39
placeholder 19
position

instruction 68
position fix I/O 189
procedure 29
program 23
program data 39
program flow instructions 55
program module 23

R

record 37
reserved words 17
robot configuration 191
routine 29

declaration 31
routine data 39

S

scope
data scope 39
routine scope 29

searching instructions 68
semi value data type 37

singularity 207, 211
soft servo 182
stationary TCP 166
stopping program execution 56
string 18
string expression 47
switch 30
syntax rules 12
system module 24

T

TCP 159, 197
stationary 166

time instructions 103
tool centre point 159, 197
tool coordinate system 165
trap routine 29, 87
typographic conventions 12

U

User - system module 27
user coordinate system 161

V

VAR 40
variable 39

W

wait instructions 57
world coordinate system 160
wrist coordinate system 165

X

XOR 46
3HAC16580-1 Revision: G226

ABB AB
Robotics Products
SE-721 68 Västerås
SWEDEN
Telephone: +46 (0) 21-34 40 00
Telefax: +46 (0) 21-13 25 92

3H
A

C
16

58
0-

1,
 R

ev
is

io
n

G
 ,

E
n

	Technical reference manual - RAPID overview
	Table of contents
	1 Introduction
	1.1 Other manuals
	1.2 How to read this manual

	2 Basic RAPID programming
	2.1 Program structure
	2.1.1 Basic elements
	2.1.2 Modules
	2.1.3 System module User
	2.1.4 Routines

	2.2 Program data
	2.2.1 Data types
	2.2.2 Data declarations

	2.3 Expressions
	2.3.1 Arithmetic expressions
	2.3.2 Logical expressions
	2.3.3 String expressions
	2.3.4 Using data in expressions
	2.3.5 Using aggregates in expressions
	2.3.6 Using function calls in expressions
	2.3.7 Priority between operators
	2.3.8 Example
	2.3.9 Syntax

	2.4 Instructions
	2.4.1 Syntax

	2.5 Controlling the program flow
	2.5.1 Programming principles
	2.5.2 Calling another routine
	2.5.3 Program control within the routine
	2.5.4 Stopping program execution
	2.5.5 Stop current cycle

	2.6 Various instructions
	2.6.1 Assigning a value to data
	2.6.2 Wait
	2.6.3 Comments
	2.6.4 Loading program modules
	2.6.5 Various functions
	2.6.6 Basic data
	2.6.7 Conversion function

	2.7 Motion settings
	2.7.1 Programming principles
	2.7.2 Maximum TCP speed
	2.7.3 Defining velocity
	2.7.4 Defining acceleration
	2.7.5 Defining configuration management
	2.7.6 Defining the payload
	2.7.7 Defining the behaviour near singular points
	2.7.8 Displacing a program
	2.7.9 Soft servo
	2.7.10 Adjust the robot tuning values
	2.7.11 World zones
	2.7.12 Various for motion settings

	2.8 Motion
	2.8.1 Programming principles
	2.8.2 Positioning instructions
	2.8.3 Searching
	2.8.4 Activating outputs or interrupts at specific positions
	2.8.5 Control of analog output signal proportional to actual TCP
	2.8.6 Motion control if an error/interrupt takes place
	2.8.7 Get robot info in a MultiMove system
	2.8.8 Controlling external axes
	2.8.9 Independent axes
	2.8.10 Path correction
	2.8.11 Path Recorder
	2.8.12 Conveyor tracking
	2.8.13 Sensor synchronization
	2.8.14 Load identification and collision detection
	2.8.15 Position functions
	2.8.16 Check interrupted path after power failure
	2.8.17 Status functions
	2.8.18 Motion data
	2.8.19 Basic data for movements

	2.9 Input and output signals
	2.9.1 Programming principles
	2.9.2 Changing the value of a signal
	2.9.3 Reading the value of an input signal
	2.9.4 Reading the value of an output signal
	2.9.5 Testing input or output signals
	2.9.6 Disabling and enabling I/O modules
	2.9.7 Defining input and output signals
	2.9.8 Get status of I/O bus and unit
	2.9.9 Start of I/O bus

	2.10 Communication
	2.10.1 Programming principles
	2.10.2 Communicating using the FlexPendant, function group TP
	2.10.3 Communicating using the FlexPendant, function group UI
	2.10.4 Reading from or writing to a character-based serial channel/file
	2.10.5 Communicating using binary serial channels/files/field buses
	2.10.6 Communication using rawbytes
	2.10.7 Data for serial channels/files/field buses
	2.10.8 Communicating using sockets
	2.10.9 Communication using RAPID Message Queues

	2.11 Interrupts
	2.11.1 Programming principles
	2.11.2 Connecting interrupts to trap routines
	2.11.3 Ordering interrupts
	2.11.4 Cancelling interrupts
	2.11.5 Enabling/disabling interrupts
	2.11.6 Interrupt data
	2.11.7 Data type of interrupts
	2.11.8 Safe Interrupt
	2.11.9 Interrupt manipulation
	2.11.10 Trap routines

	2.12 Error recovery
	2.12.1 Programming principles
	2.12.2 Creating an error situation from within the program
	2.12.3 Booking an error number
	2.12.4 Restarting/returning from the error handler
	2.12.5 User defined errors and warnings
	2.12.6 IGenerate process error
	2.12.7 Data for error handling
	2.12.8 Configuration for error handling
	2.12.9 Error handlers
	2.12.10 System error handler
	2.12.11 Errors raised by the program
	2.12.12 The event log
	2.12.13 UNDO

	2.13 System & time
	2.13.1 Programming principles
	2.13.2 Using a clock to time an event
	2.13.3 Reading current time and date
	2.13.4 Retrieve time information from file
	2.13.5 Get the size of free program memory

	2.14 Mathematics
	2.14.1 Programming principles
	2.14.2 Simple calculations on numeric data
	2.14.3 More advanced calculations
	2.14.4 Arithmetic functions
	2.14.5 String digit functions
	2.14.6 Bit functions

	2.15 External computer communication
	2.15.1 Programming principles
	2.15.2 Sending a program-controlled message from the robot to a computer

	2.16 File operation functions
	2.17 RAPID support instructions
	2.17.1 Get system data
	2.17.2 Get information about the system
	2.17.3 Get information about memory
	2.17.4 Read configuration data
	2.17.5 Write configuration data
	2.17.6 Restart the controller
	2.17.7 Text tables instructions
	2.17.8 Get object name
	2.17.9 Get information about the tasks
	2.17.10 Get current event type, execution handler or execution level
	2.17.11 Search for symbols

	2.18 Calib & service instructions
	2.18.1 Calibration of the tool
	2.18.2 Various calibration methods
	2.18.3 Directing a value to the robot’s test signal
	2.18.4 Recording of an execution

	2.19 String functions
	2.19.1 Basic operations
	2.19.2 Comparison and searching
	2.19.3 Conversion

	2.20 Multitasking
	2.20.1 Basics
	2.20.2 General instructions and functions
	2.20.3 MultiMove System with coordinated robots
	2.20.4 Synchronising the tasks
	2.20.5 Synchronising using polling
	2.20.6 Synchronising using an interrupt
	2.20.7 Intertask communication
	2.20.8 Type of task
	2.20.9 Priorities
	2.20.10 Trust Level
	2.20.11 Something to think about
	2.20.12 Programming scheme

	2.21 Backward execution
	2.21.1 Backward handlers
	2.21.2 Limitation of move instructions in the backward handler
	2.21.3 Behavior of the backward execution

	2.22 Syntax summary
	2.22.1 Instructions
	2.22.2 Functions

	3 Motion and IO programming
	3.1 Coordinate systems
	3.1.1 The robot’s tool centre point (TCP)
	3.1.2 Coordinate systems used to determine the position of the TCP
	3.1.3 Coordinate systems used to determine the direction of the tool
	3.1.4 Related information

	3.2 Positioning during program execution
	3.2.1 General
	3.2.2 Interpolation of the position and orientation of the tool
	3.2.3 Interpolation of corner paths
	3.2.4 Independent axes
	3.2.5 Soft Servo
	3.2.6 Stop and restart
	3.2.7 Related information

	3.3 Synchronisation with logical instructions
	3.3.1 Sequential program execution at stop points
	3.3.2 Sequential program execution at fly-by points
	3.3.3 Concurrent program execution
	3.3.4 Path synchronisation
	3.3.5 Related information

	3.4 Robot configuration
	3.4.1 Different types of robot configurations
	3.4.2 Specifying robot configuration
	3.4.3 Configuration check
	3.4.4 Related information

	3.5 Robot kinematic models
	3.5.1 Robot kinematics
	3.5.2 General kinematics
	3.5.3 Related information

	3.6 Motion supervision/collision detection
	3.6.1 Introduction
	3.6.2 Tuning of collision detection levels
	3.6.3 Motion supervision dialogue box
	3.6.4 Digital outputs
	3.6.5 Limitations
	3.6.6 Related information

	3.7 Singularities
	3.7.1 Singularity points of IRB140
	3.7.2 Program execution through singularities
	3.7.3 Jogging through singularities
	3.7.4 Related information

	3.8 Optimized acceleration limitation
	3.9 World Zones
	3.9.1 Using global zones
	3.9.2 Using World Zones
	3.9.3 Definition of World Zones in the world coordinate system
	3.9.4 Supervision of the robot TCP
	3.9.5 Stationary TCPs
	3.9.6 Actions
	3.9.7 Minimum size of World Zones.
	3.9.8 Maximum number of World Zones
	3.9.9 Power failure, restart, and run on
	3.9.10 Related information

	3.10 I/O principles
	3.10.1 Signal characteristics
	3.10.2 Signals connected to interrupt
	3.10.3 System signals
	3.10.4 Cross connections
	3.10.5 Limitations
	3.10.6 Related information

	4 Glossary
	Index

